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0.1 Root-finding

Last time, we described a geometric proof of the fundamental theorem of algebra. The rough idea was this: we
identify a polynomial with a point in Euclidean space

f(x) := adx
d + . . .+ a0 ⇔ (ad, . . . , a0) ∈ Cd+1.

Then, we try to understand a “function” from Cd+1 to C that sends f to one of its roots. Of course, this function
cannot be globally well-defined, since polynomials generally have more than one root! So, suppose we are given a
polynomial f ∈ U ⊂ Cd+1, where U is an open set. To be able to solve for a unique root, we’ll need the implicit
function theorem like in the last lecture. So, assume further that f /∈ Σd, the degenerate set from the last lecture.
Shrinking U further if necessary, we may assume U ∩ Σd = ∅.

By the implicit function theorem, there exists a solution function Z : U → C that sends any g ∈ U to a unique
root Z(g). In fact, we have a recipe for differentiating this solution function. Let’s consider any homotopy function
H(x; t) with the property H(x; 0) = f(x). For t with H(x; t) ∈ U, we write z(t) = Z (H(x; t)).

Now, for t sufficiently small, we have

H(z(t); t) = 0 ⇒ dH

dx
(z(t); t) · z′(t) + dH

dt
(z(t); t) = 0 ⇒ z′(t) = −

(
dH

dx
(z(t); t)

)−1

· dH
dt

(z(t); t).

Let r = z(0) denote the local root of f. Evaluating the above at t = 0, we obtain

z′(0) = − (f ′(r))
−1 · dH

dt
(r; 0) (1)

Equation (1) will help us understand the condition number for the polynomial root finding problem. This is a
quantity that tells us how sensitive our root-finding function is to “small” perturbations in the coefficients of the
input. To define “small” more precisely, let us endow the input space Cd+1 with the usual Hermitian inner product
and norm. For a⃗ = (ad, . . . , a0), b⃗ = (bd, . . . , b0) ∈ Cd+1, we define

⟨⃗a, b⃗⟩ =
d∑

j=0

aib̄i

∥a⃗∥ =
√
⟨⃗a, a⃗⟩.

Here, ζ̄ denotes the usual complex conjugate of ζ ∈ C. We recall the Cauchy-Schwartz inequality:

|⟨⃗a, b⃗⟩|2 ≤ ∥a⃗∥2∥⃗b∥2,

where ∥ζ∥ =
√
ζζ̄ is the usual modulus. This has the following geometric consequence: for fixed a⃗ ∈ Cd+1,

max
∥⃗b∥=1

|⟨⃗a, b⃗⟩| = ∥a⃗∥. (2)

Let us again examine equation 1: we have

z′(0) = − (f ′(r))
−1 ⟨r⃗, c⃗⟩, where

r⃗ = (rd, . . . , 1),

c⃗ = (cd, . . . , c0), and

dH

dt
(x; 0) = c̄dx

d + . . .+ c̄0.
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This expresses the derivative of the solution function at f as the linear map

Z ′(f) : Cd+1 → C

c⃗ 7→ − (f ′(r))
−1 ⟨r⃗, c⃗⟩

For those familiar with tangent spaces (which we’ll come back and define later): this map “pushes forward” a
tangent vector c⃗ ∈ Cd+1 ∼= Tf (Cd+1) into C ∼= Tr(C). Now, if g = c̄dx

d + . . .+ c̄0 is a small perturbation of f, then

|Z(f)− Z(g)| ≈ ∥Z ′(f)∥op · ∥f − g∥,

where ∥ • ∥op denotes the operator norm,

∥Z ′(f)∥op = max
∥c⃗∥=1

|Z ′(f) · c⃗| (3)

= |f ′(r)|−1 ·

√√√√ d∑
j=0

|r|2j (by 2.)

Thus, the amount by which a root r of a polynomial of f varies when the coefficients of f are slightly perturbed
can be quantified in terms of f and r alone. This quantity is an example of a condition number.

Definition 0.1. Let f = adx
d + . . .+ a0 be a univariate polynomial of degree d with a non-repeated root r. The

absolute condition number of root-finding for f at r (with respect to the usual Hermitian norm) is the number

κ[r](f) = |f ′(r)|−1 ·

√√√√ d∑
j=0

|r|2j . (4)

Remark 0.2. Clearly the assumption that r is non-repeated in Definition 0.1 is necessary. Note also that this
definition could also be modified by choosing different norms on the input space Cd+1 and the output space C.

Now, in numerical analysis, we are usually interested in controlling relative errors like

∥|f − g∥|/∥f∥, |Z(f)− Z(g)|/|Z(f)|.

In other words: what is computed should not differ from the true values by a significant percentage of the “size”
of those true values. This motivates the following definition.

Definition 0.3. With the same setup as Definition 0.1, we define the relative condition number to be

κREL[r](f) =
∥f∥κ[r](f)

|r|
= |rf ′(r)|−1 ·

√√√√ d∑
j=0

|r|2j ·

√√√√ d∑
j=0

|aj |2. (5)

Example 1. A famous example of a poorly-conditioned polynomial is Wilskinson’s polynomial

f(x) = (x− 1) · (x− 2) · · · (x− 20).

The perturbed polynomial f + 10−10x19 has roots given approximately by

1, . . . , 7, 7.99994, 9.00084, 9.99252, 11.0506, 11.8329, 13.349, 13.349, 15.4578, 15.4578, 17.6624, 17.6624, 19.2337, 19.9509.

The perturbed polynomial f + 10−9x19 has multiple non-real roots. We see that the small roots of f are fairly
well-conditioned: for instance, we may calculate

κ[1](f) ≈ 10−16, κREL[1](f) ≈ 857.

For the larger roots, the situation is much more dire: for example,

κ[15](f) ≈ 3.8× 1010, κREL[15](f) ≈ 5.4× 1028.

This example is counter-intuitive because the polynomial is “given” in a simple way (factored). However, the
condition numbers we defined assume the polynomial is “given” by its coefficients, which are enormous.
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0.2 Linear Algebra

Moving on from polynomial root-finding for now, let’s look at condition numbers for the more classical problem of
matrix inversion. This was the original context in which condition numbers were introduced by Turing.

For the time being, we will work with the space Rm×n whose points are real m× n matrices. This is a vector
space which can be endowed with many norms. We will mostly think about the Euclidean/Frobenius norm

∥A∥ =
√
trace(ATA) =

√√√√ ∑
1≤i≤m
1≤j≤n

a2ij , (6)

and the associated operator norm, commonly known as the spectral norm,

∥A∥op = max
∥x∥=1

∥Ax∥. (7)

Both norms are orthogonally invariant: if U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices, then we have

∥UAV ∥ = ∥A∥, ∥UAV ∥op = ∥A∥op.

Thus, both norms can be expressed in terms of the singular value decomposition (in fact, the singular values) of A:
if A = UΣV T , with U and V orthogonal and Σ with non-zero entries σ1 ≥ . . . ≥ σr > 0 on the main diagonal, then

∥A∥ = σ2
1 + . . .+ σ2

r , ∥A∥op = σ1.

Here is an important property of the operator norm:

Proposition 0.4. For A ∈ Rm×n, B ∈ Rn×k, we have ∥AB∥op ≤ ∥A∥op ∥B∥op.

Proof.

∥AB∥op = max
∥x∥=1

∥(AB)x∥

= max
x ̸=0

∥(AB)x∥
∥x∥

= max
x ̸=0

(
∥A(Bx)∥
∥Bx∥

· ∥Bx∥
∥x∥

)
≤ max

x,y ̸=0

(
∥Ay∥
∥y∥

· ∥Bx∥
∥x∥

)
= ∥A∥op ∥B∥op.

We now study the derivative of the map inv : U → U at a point A ∈ U, where U ⊂ Rn×n is the open set of all
invertible matrices. Again, implicit differentiation comes to the rescue:

AB = I ⇒ ȦB +AḂ = 0 ⇒ Ḃ = −A−1ȦB = −A−1ȦA−1.

This expresses the derivative of inv at the point A as a linear map between tangent spaces,

˙invA :

∼=TA(U)︷ ︸︸ ︷
Rn×n →

∼=TA−1 (Rn×n)︷ ︸︸ ︷
Rn×n

Ȧ 7→ −A−1ȦA−1.

Let us now endow both the input space U and the output space Rn×n with the operator norm. With respect to
these choices, we may use orthogonal invariance and Proposition 0.4 to compute the operator norm of the derivative,

max
∥Ȧ∥op=1

∥ ˙invA(Ȧ)∥op = max
∥Ȧ∥op=1

∥A−1ȦA−1∥op = max
∥Ȧ∥op=1

∥Σ−1ȦΣ−1∥op ≤ ∥Σ−1∥2op,

with equality attained when Ȧ = I. Thus

max
∥Ȧ∥op=1

∥ ˙invA(Ȧ)∥op = ∥Σ−1∥2op = ∥A−1∥2op = 1/σ2
n.

This calculation justifies the following definition.
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Definition 0.5. Let A be a nonsingular matrix with greatest singular value σ1 and least singular value σn. The
absolute and relative condition numbers of matrix inversion at A are given by

κ[inv](A) =
1

σ2
n

, κREL[inv] =
∥A∥op κ[inv](A)

∥A−1∥op
=

σ1

σn
. (8)

Remark: Suppose we endowed our input and output spaces with the Frobenius norm instead of the operator
norm. How would the condition numbers in Definition 0.5 change? It turns out that the absolute condition number
does not change: working with the square operator norm of the derivative, we have

max
∥Ȧ∥=1

∥ ˙invA(Ȧ)∥2 = max
∥Ȧ∥=1

∥A−1ȦA−1∥2op = max
∥Ȧ∥=1

∥Σ−1ȦΣ−1∥2 = max∑
ȧ2
i,j=1

∑
1≤i,j≤n

ȧ2i,j
σ2
i σ

2
j

.

Using σiσj ≥ σ2
n, we have

max
∥Ȧ∥=1

∥ ˙invA(Ȧ)∥2 ≤ 1

σ4
n

,

with equality attained when ȧn,n = 1 and all other entries are zero. Taking the square root gives us the absolute
condition number

max
∥Ȧ∥=1

∥A−1ȦA−1∥ =
1

σ2
n

.

The relative condition number, on the other hand, becomes more unwiedly:

1

σ2
n

· ∥A∥
∥A−1∥

=
1

σ2
n

√
σ2
1 + . . .+ σ2

n

σ−2
1 + . . .+ σ−2

n

.

Next steps: Just like the case of polynomial root-finding, there is a set of degenerate instances for the problem of
inverting a matrix. This set is defined by the equation detA = 0. Amazingly, the Eckart-Young Theorem states that
1/κ[inv](A) can be interpreted as the squared distance from A to this set. This is a special instance of a cornerstone
problem in applied algebraic geometry: namely, minimizing the Euclidean distance from a point u ∈ Rn to a real
algebraic variety X ⊂ Rn. This will be the focus of the next lecture.

Reference: Breiding, P, Kohn, K, and Sturmfels, B (2024). Metric Algebraic Geometry (Chapter 9).

4

https://kathlenkohn.github.io/Papers/MFO_Seminar_MAG.pdf

	Root-finding
	Linear Algebra

