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Let K be a field. Recall that K is said to be algebraically closed if every nonconstant univariate polynomial with
coefficients in K has a root. For example, neither the field of real numbers R nor its subfield consisting of rational
numbers Q is algebraically closed, since the polynomial x2 + 1 has no real roots.

Here is one reason why mathematicians love the field of complex numbers C.

Theorem 1 (Fundamental Theorem of Algebra). C is algebraically closed.

It’s likely you’ve seen this theorem stated in a high school algebra course. I will explain a proof of Theorem 1
that will hopefully help you understand why it is true. The proof is essentially constructive, and introduces the
main ideas behind homotopy continuation, which can be used to numerically solve systems of equations in more
than one variable. The key idea is to think of a univariate polynomial adx

d + ad−1x
d−1 + · · · + a0 ∈ C[x] as a

point (ad, . . . , a0) ∈ Cd+1 in a space of problems. Within this space, most problems are non-degenerate in the sense
that the corresponding polynomial has d distinct roots. To make this precise, we will being by defining a subset of
degenerate problems Σd ⊂ Cd and studying its properties. More precisely, Σd will be the set of polynomials which
either have a repeated root or have degree not equal to d. As it turns out, Σd is has the structure of an affine
algebraic variety—more precisely, a hypersurface: we’ll define these terms later.

Recall that a univariate polynomial f(x) has a repeated root if and only if f(x) and its derivative f ′(x) share
a common root. To understand for which polynomials this occurs, it will be useful to ask a more general question:
given two univariate polynomials,

f = adx
d + . . .+ a0, (1)

g = bex
e + . . .+ b0, (2)

we ask: under what conditions on the coefficients (ad, . . . , a0, be, . . . , b0) ∈ Cd+e+2 do f and g share a common
root? The answer can be given in terms of the classical (d+ e)× (d+ e) Sylvester matrix:

Syld,e(f, g) =



ad · · · a1 a0 0 · · · · · · 0
. . .

. . .

0 · · · · · · 0 ad · · · a1 a0
be · · · b0 0 0 · · · · · · 0

. . .
. . .

0 · · · · · · 0 be · · · b0


(3)

We define the resultant of f and g to be the determinant of the Sylvester matrix,

Resd,e(f, g) = det Syld,e(f, g). (4)

Note that Resd,e(f, g) may be viewed as a multivariate polynomial in the coefficients of f and g. When g = f ′,
cofactor expansion along the first column of Syld,d−1(f, f

′) gives us

Resd,d−1(f, f
′) = ad∆d(ad, . . . , a0), (5)

where ∆d(a0, . . . , ad) is a polynomial known as the discriminant of f.

Example 1. Letting f = a2x
2 + a1x+ a0, we have

Syl2,1(f, f
′) =

 a2 a1 a0
2a2 a1 0
0 2a2 a1

 .
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Cofactor expansion gives (at least up to sign) the familiar discriminant ∆2:

Res2,1(f, f
′) = a2

∣∣∣∣ a1 0
2a1 a1

∣∣∣∣− 2a2

∣∣∣∣ a1 a0
2a2 a1

∣∣∣∣ = a2 (4a0a2 − a21)︸ ︷︷ ︸
∆2

.

Definition 0.1. For d ≥ 1, identifying f = adx
d + . . .+ a0 with (ad, . . . , a0) ∈ Cd+1, we define

Σd = {f ∈ Cd+1 | Resd,d−1(f, f
′) = 0} = {f ∈ Cd+1 | ∆d(ad, . . . , a0) = 0 or ad = 0}.

Proposition 0.2. Two polynomials whose resultant is nonzero do not have a common root. In particular, if
f = adx

d + . . .+ a0 is a degree-d univariate polynomial with ∆d(ad, . . . , a0) ̸= 0, then f has no repeated roots.

Proof. Let f be as in 1 and g be as in 2, and suppose that Resd,e(f, g) ̸= 0. Then the linear system[
αe−1 · · · α0 βd−1 · · · β0

]
Syld,e(f, g) =

[
0 · · · 0 1

]
has a solution

[
αe−1 · · · β0

]
. Observe that such a solution corresponds to a polynomial identity

(αe−1x
e−1 + . . .+ α0)f(x) + (βd−1x

d−1 + . . .+ β0)g(x) = 1. (6)

If f and g had a common root, we could deduce 0 = 1 from 6; therefore, no common root can exist.

Homotopy continuation methods for computing roots of g ∈ Cd+1 perform the following steps:

1. Pick some f ∈ Cd+1 \ Σd whose roots we already know.

2. Set up a homotopy function

H : [0, 1] → Cd+1

such that H(x; 0) = f(x), H(x; 1) = g(x), H(x; t) /∈ Σd ∀t ∈ [0, 1). (7)

3. For some discretization of the unit inverval

0 = t0 < t1 < . . . < tk−1 < tk = 1, (8)

use known roots of the equation H(x; ti) = 0 to estimate the roots of H(x; ti+1) = 0 for each i = 0, . . . , k− 1.

The f and g in the homotopy function 7 are known as the start system and target system, respectively—we’ll use
the same terminology later when we construct homotopies for systems of multivariate equations.

Remark: Our use of the term “homotopy” is somewhat nonstandard: H is really a path in the space of
polynomials Cd+1. If we fix our start system f ∈ Cd+1, the the homotopy function in 7 gives rise to a homotopy
(in the traditional sense) on the space of polynomials Cd+1, namely

Hf : Cd+1 × [0, 1] → Cd+1

(g, t) 7→ H(x; t).

Note that 7 is only an abstract specification of a homotopy function; we haven’t yet shown that such a function
actually exists. Fortunately, there is a simple choice of start system that works for any d ≥ 1:

f(x) = xd − 1. (9)

Observe that the d-th roots of unity

e2πik/d = cos(2πik/d) + i sin(2πik/d), k = 0, . . . , d− 1,

where i2 = −1, are all roots of f . This follows from Euler’s formula:

(e2πik/d)d − 1 = (e2πi)k − 1 = 1k − 1 = 0.

Furthermore, these are the only roots, due to the following general fact.
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Proposition 0.3. Let K be a field. A univariate polynomial of degree d with coefficients has at most d roots in K.

(This is easily proven using polynomial long division, which we will later generalize using Gröbner bases.)
Our next observation is that the homotopy function in 7 can be understood as a path in the space of polynomials;
our abstract specification requires that all points along this path except the target system don’t lie in Σd. When
the target system is also non-degenerate, we have the following connectivity result.

Proposition 0.4. Fix f, g ∈ Cd+1 \ Σd. Then there exists a path Hf,g : [0, 1] → Cd+1 \ Σd with coordinate
functions quadratic in t such that Hf,g(0) = f and Hf,g(1) = g.

Proof. Consider the linear segment s : [0, 1] → Cd+1 connecting f and g,

s(t) = s(x; t) = (1− t)f + tg, (10)

and the following univariate polynomial in t:

h(t) = Resd,d−1

(
s(x; t),

∂

∂x
s(x; t)

)
. (11)

By Proposition 0.3, h has finitely-many complex roots: call them tj = xj + iyj , for j = 1, . . . ,m. Consider the
family of paths γc : [0, 1] → C, parametrized by c ∈ R, which are defined by γc(t) = t + ict(1 − t). We may then
choose c so that γc(t) ̸= tj for all t ∈ [0, 1] and j = 1, . . . ,m. Indeed, any

c < min
1≤j≤m

(
yi

xi(1− xi)

)
will work. Setting Hf,g(t) = s(x; γc(t)) then gives the result.

Finally, before proving Theorem 1, we will need a rough bound on the size of the roots of a polynomial.

Proposition 0.5. [Cauchy Bound] For f = adx
d + . . .+ a0 ∈ C[x] of degree d, any root x of f satisfies

|x| ≤ 1 + max
0≤i≤d−1

|ai|
|ad|

.

Proof of Theorem 1. Set f(x) = xd − 1. We show that any g ∈ Cd+1 has a root. To see this, consider first the case
where g /∈ Σd, and set H(x; t) = Hf(x),g(x)(t), with Hf,g as in the statement of Proposition 0.4.

Consider the set
D = {t ∈ [0, 1] | H(x; t) has a root x ∈ C}. (12)

To show that g has a root, it suffices to show thatD = [0, 1]. This will follow if we show thatD ⊂ [0, 1] is a nonempty,
open, and closed subset. Using Proposition 0.2, we have 0 ∈ D, so D is nonempty. Furthermore, Proposition 0.2
implies that for any t ∈ D we have

H(x; t) = 0 ⇒ ∂

∂x
H(x; t) ̸= 0.

By the implicit function theorem, there exists an interval I = (t− ϵ, t+ ϵ) ⊂ R such that H(x; t′) has a root for all
t′ ∈ I. This shows that D is open. Finally, to see that D is closed, consider the closed set

I = {(x, t) ∈ C× [0, 1] | H(x; t) = 0} ⊂ [0, 1]. (13)

The set I is also bounded; this follows from an application of Proposition 0.5 and the extreme value theorem. Now,
if t ∈ [0, 1] is any limit point of the set D, there exists a sequence (xj , tj)

∞
j=1 ∈ I converging to a point (t, x) ∈ I.

Since H(x; t) = 0, this implies t ∈ D, and we conclude that D is closed.
Finally, we consider the case g ∈ Σd. We may assume that g has degree d (otherwise we are done by induction.)

If we construct the homotopy H(x; t) connecting f and g as before, then there are only finitely many points t ∈ [0, 1]
for which H(x; t) /∈ Σd. Restricting H to a suitably small closed subinterval of [0, 1] gives a homotopy satisfying
the conditions of 7. A limiting argument similar to the previous one shows g has a complex root.

Reference: Rojas, J. M. (2024). On the BCSS Proof of the Fundamental Theorem of Algebra. arXiv:2406.12198.
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