
Condition Numbers

Brent Koogler

March 3, 2025

1 Introduction

We begin with a geometric definition of condition numbers due to the classical paper [Ric66]. This requires a
brief review of Riemannian manifolds. These condition numbers sometimes have a geometric interpretation.
We have already seen the condition number for matrix inversion. This can be interpreted as a distance to
a bad discriminant set. We provide several proofs: two computational [Wikb; Wika] and one geometric
[Bou23; BKS24].

2 A geometric definition of conditioning

We limit our discussion to regular embedded Riemannian submanifolds of the Euclidean space Rn, endowed
with the standard inner product. This allows us to prove the fundamental result from [Ric66] with nice
Euclidean intuition. This is all that is needed for the condition number theorem results in [BKS24].

2.1 Riemannian submanifold background

Definition 2.1 (Manifold). We call a subset M ⊆ Rn an m-dimensional regular Riemannian submanifold
if for each p ∈ M , there is an open neighborhood p ∈ Up ⊆ Rn and a smooth function Fp : Up → Rn−m such
that F−1

p (0) ⊆ M and such that the differential (Jacobean matrix) has full rank. We endow M with the
induced inner product from Rn:

⟨·, ·⟩ = ⟨·, ·⟩M = ⟨·, ·⟩Rn

∣∣
M×M

.

In addition, we call M an n-dimensional regular Riemannian submanifold if M ⊆ Rn is open.

For example, we can consider S2 ⊆ R3. Define F : R3 \ {0} → R by F (x) = ∥x∥2 − 1. Certainly
F−1(0) = S2 and we have the derivative (differential)

DF (x)[v] = ⟨x, v⟩, x, v ∈ R3,

which has full rank for x ̸= 0. In contrast, the set of matrices of fixed rank Rn×m
=r usually needs several such

charts depending on the location of the nonzero r × r minor. More on this later.

Notation 2.2. Let (Mk, ⟨·, ·⟩ = ⟨·, ·⟩k) denote an mk-dimensional regular Riemannian submanifold of Rnk .
For k = 0, we omit the subscript k.

Definition 2.3 (Tangent and normal spaces). Let p ∈ M , and let F : U → Rn−m denote a smooth zero
function at p. The tangent space at p is

TpM = nullDF (p),

and it has dimension dimTpM = n− (n−m) = m. The normal space is the orthogonal complement in the
embedding space Rn:

NpM = (TpM)⊥ =⇒ TpM ⊕NpM = Rn.

Proposition 2.4 (Tangents as curves). Let p ∈ M be a point. For each vector v ∈ TpM , there is a smooth
curve c : (−ϵ, ϵ) → M ⊆ Rn with c(0) = p such that ċ(0) = v. Conversely, ċ(0) ∈ TpM for each such curve.
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Proof. By picture. Rigorously, this is an implicit function theorem result.

On S1, let p = ( 1√
2
, 1√

2
) ∈ S1 ⊆ R2, and let F (x) = ∥x∥2 − 1. Then DF (x)[v] = ⟨x, v⟩. For α > 0, define

c(t) =
(
cos(α t+ π

4 ), sin(α t+ π
4 )
)
.

Then we have the 1-dimensional tangent space representation

ċ(t) = α
(
−sin(α t+ π

4 ), cos(α t+ π
4 )
)

and ċ(0) = α
(
− 1√

2
, 1√

2

)
.

Definition 2.5 (Smooth function and its differential). We call a function f : M → R smooth if there exists
an open neighborhood U ⊇ M and a smooth extension f : U → R with f |M = f . Let p ∈ M , let v ∈ TpM ,
and let c(0) = p and ċ(0) = v with c : (−ϵ, ϵ) → M smooth. The differential of f at p in the direction v is
defined as

Df(p)[v] = Df(p)[v] =
d

dt

∣∣∣
t=0

(f ◦ c)(t).

The differential Df(p) : TpM → R is linear (clearly seen by transferring to f).

Definition 2.6 (Geodesic). We call a curve γ : (−ϵ, ϵ) → M a geodesic if γ is smooth, has unit velocity,
and has zero accelearation. (The unit velocity is nonstandard.) Unit velocity:

∥γ̇(0)∥ = 1.

Unit acceleration:
projTγ(t)M

γ̈(t) = 0.

Theorem 2.7. Locally, the shortest arc length between any two points is given by a geodesic.

For geodesics, think “great arcs” on S2. Locally, there are unique distance minimizing arcs.
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Definition 2.8 (Local distance). Let p, q ∈ M . The distance between p and q is

d(p, q) = inf
c

∫ b

a

∥ċ(t)∥ dt,

where c : (a, b)R → M is smooth with c(a) = p and c(b) = q. If no such path c exists, the distance function
is not defined.

Theorem 2.9. For all p ∈ M , there is an open neighborhood U ⊆ M containing p such that d(q, p) exists
for all q ∈ U . In fact, the infinum is achieved by a geodesic parameterized by arc length (unit speed).

Definition 2.10. Let B(p, δ) denote the ball centered at p ∈ M of radius δ > 0, using our local distance
d. (This is only defined for all δ sufficiently small, and this notion of sufficiently small need not be uniform
over M .)

Proposition 2.11. Let p ∈ M . There is a one-to-one correspondence between ∂B(p, δ) and the unit sphere in
TpM given by the geodesics of constant unit velocity. The correspondence is given by arc-length parameterized
geodesics.

2.2 Conditioning

Definition 2.12 (Condition number). Let F : M1 → M2 be a function. The condition number of F at
p ∈ M is

κ(F )(p) = lim
δ↘0

inf
{
κ > 0 : F

(
B(p, δ)

)
⊆ B

(
F (p), κ δ

)}
,

if it exists. (We did not require F to be smooth here.)

So, κ(F )(p) quantifies infinitesimal perturbations, which we can visualize.

Theorem 2.13 (Smooth condition number). Let F : M1 → M2 be smooth, and let p ∈ M1. Then

κ(F )(p) = ∥DF (p)∥op = sup
∥v∥1=1
v∈TpM

∥DF (p)[v]∥2.

Lemma 2.14. The (local) map q 7→ d(q, p) has (one-sided) differential

D
(
d(·, p)

)
(p)[v] = ∥v∥TpM , ∀v ∈ TpM.

Proof. Let v ∈ TpM have unit length ∥v∥ = 1. Let γ : [0, ϵ) → M be an arc-length parameterized geodesic
with γ(0) = p and γ̇(0) = v. Then d(γ(t), p) = t and

D
(
d(·, p)

)
(p)[v] =

d

dt

∣∣∣
t=0

d
(
γ(t), p

)
= 1.
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So, for v ∈ TpM arbitrary, we have linearity: for nonzero v,

D
(
d(·, p)

)
(p)[v] =

��������:1
D
(
d(·, p)

)[ v

∥v∥

]
∥v∥ = ∥v∥.

Proof of theorem. Let M1 = M2 = M for notational convenience. We rewrite

κ(F )(p) = lim
δ↘0

sup
d(q,p)≤δ

d
(
F (q), F (p)

)
δ

.

Let 0 < δ ≪ 1 be small, let γ : [0, dp,q] → M be a geodesic with γ(0) = p and γ(dp,q) = q (arc-length
parameterized). Because d(F (γ(t)), F (p)) is a (local) smooth real valued function (somewhat subtle), we
expand

d
(
F (γ(t)), F (p)

)
= d(·, F (p)) ◦ F ◦ γ(t)

=
��������:0
d
(
F (γ(0)), F (p)

)
+

( d

dt

∣∣∣
t=0

d(·, F (p)) ◦ F ◦ γ(t)
)
t+ o(t)

= D
(
d(·, F (p))

)(
F (p)

) [
DF (p)[γ̇(0)]

]
t+ o(t) (chain rule)

= ∥DF (p)[γ̇(0)]∥ t+ o(t).

So, for v = γ′(0) ∈ TpM arbitrary of unit length,

d
(
F (q), F (p)

)
δ

= ∥DF (p)[v]∥ dp,q
δ

+ o
(dp,q

δ

)
,

and consequently

lim
δ↘0

sup
d(q,p)≤δ

d
(
F (q), F (p)

)
δ

= lim
δ↘0

sup
d(q,p)=δ

∥DF (p)[v]∥ = sup
∥v∥=1
v∈TpM

∥DF (p)[v]∥,

as desired.

3 Eckart-Young theorem: a condition number theorem

We recall our condition number result from class. Let

inv : GL(n,R) → GL(n,R)
A 7→ A−1

denote the matrix inversion map. We may view GL(n,R) as an (open) Riemannian submanifold of Rn×n

when equipped with the Frobenious inner product: for A = [ak,ℓ] and B = [bk,ℓ] in Rn×m,

⟨A,B⟩ = tr(AT B) =

n∑
k=1

m∑
ℓ=1

ak,ℓ bk,ℓ = ⟨vecA, vecB⟩.

For notation, let ∥A∥ =
√

⟨A,A⟩ denote the induced Frobenious norm, and let ∥A∥op = sup∥v∥=1 ∥Av∥
denote the induced ℓ2 operator norm.

Definition 3.1 (Block diagonal). In Rn×m, for numbers σ1, . . . , σr with r ≤ minn,m, define the block
diagonal matrix

block diag(σ1, . . . , σr) =

[
diag(σ1, . . . , σr) 0

0 0

]
.
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Theorem 3.2 (Full Singular Value Decomposition (SVD)). Let A ∈ Rn×m. Then there exists unitary
U ∈ Rn×n and V ∈ Rm×m (i.e., U UT = In and V V T = Im) and a block diagonal Σ ∈ Rn×m such that

A = U ΣV T .

In particular, Σ = block diag(σ1, . . . , σr) with σ1 ≥ . . . ≥ σr > 0 with r = rkA. If we enumerate the columns
U = [u1 . . . un] and V = [v1 . . . vm], then we have the rank 1 expansion

A =

r∑
k=1

σk uk v
T
k .

Observation 3.3. Because the columns of V are orthonormal, note that

Avk = σkuk.

Theorem 3.4. The singular values are continuous with respect to the matrix entries.

Now, we have the result from class.

Theorem 3.5 (Inverse condition number). For A ∈ GL(n,R),

κ(inv)(A) =
1

σn(A)2

with σn(A) > 0 the smallest singular value of A, with rkA = n.

A condition number theorem is a theorem that relates the condition number of a problem to the “distance”
to a “bad” set. We give one such notion of “distance” and “bad”.

Definition 3.6 (Rank based spaces). For 0 ≤ r, t ≤ min{n,m}, define

Rn×m
≤r = {A ∈ Rn×m : rkA ≤ r}

and
Rn×m

=t = {A ∈ Rn×m : rkA = t}.

Definition 3.7 (SVD truncation). LetA ∈ Rn×m have SVDA = U ΣV T with Σ = block diag(σ1, . . . , σmin{n,m})
and σ1 ≥ . . . ≥ σmin{n,m} ≥ 0. For 0 ≤ r ≤ min{n,m}, we define the rank r truncation of A to be

Ar = U Σr V
T where Σr = block diag(σ1, . . . , σr).

Theorem 3.8 (Eckart-Young). Let A ∈ Rn×m \ Rn×m
≤r =: Rn×m

>r . Consider the Euclidean Distance (ED)
problem (in the Frobenius norm)

min
B∈Rn×m

≤r

∥A−B∥2 =

n∑
k=1

m∑
ℓ=1

|ak,ℓ − bk,ℓ|2.

Then a minimum exists. Moreover, the minimizer BA is given by BA = Ar, the rank r truncation of A.

This relates to our matrix-inverse condition number. Note that inv is defined on GL(n,R) only, and it is
not meaningful on the set

Rn×n \GL(n,R) = Rn×n
≤n−1.

Moreover, for A ∈ GL(n,R) and SVD A = U ΣV T with Σ = diag(σ1, . . . , σn−1, σn), we can compute

min
B∈Rn×n

≤n−1

∥A−B∥2 = ∥A−An−1∥2

= ∥U ΣV T − U Σn−1 V
T ∥2

= ∥Σ− Σn−1∥2 (orthogonal invariance)

= ∥ diag(0, . . . , 0, σn)∥2

= σ2
n.
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So,

κ(inv)(A) =
1

σ2
n

=
1

dist(A,Rn×n
≤n−1)

,

i.e., the condition number is inversely proportional to the “distance” from the “bad” set.
We now give several proofs of Eckart-Young. We begin with a computational approach found in [Wikb;

Wika]. Then we describe a “geometric” approach using normal spaces following [BKS24], which requires
some more background from [Bou23].

3.1 Computational Eckart-Young

We provide two computational proofs for Eckart-Young, but one uses a different norm. In the minimization
minB∈Rn×m

≤r
∥A − B∥2, we could have used a norm other than the Frobenius norm (and then lose the ED

classification). Notably, many norms on Rn×m induce the same minimizer Ar, the rank r truncation. Most
of these norms can be defined in terms of the singular values of the input matrix. So, we first prove the
result for the ℓ2 operator norm

∥A∥op := max
∥v∥=1

∥Av∥2 ≡ σ1(A),

and then we show the Frobenius case.

Proof of the ℓ2 case. Recall that the operator norm ∥ · ∥op orthogonally invariant and is equal to the largest
singular value of a matrix. Write the SVD A = U ΣV T with Σ = block diag(σ1, . . . , σrkA), where rkA > r
by hypothesis. Recall that we implicitly order σ1 ≥ . . . ≥ σrkA ≥ 0. Precompute

∥A−Ar∥2op = ∥U ΣV T − U Σr V
T ∥2op

= ∥Σ− Σr∥2op (orthogonal invariance)

= ∥block diag(0, . . . , 0, σr+1, . . . , σrkA)∥2op
= σ2

r+1.

Now, let B ∈ Rn×m
≤r be arbitrary, say B ∈ Rn×m

=t with 0 ≤ t ≤ r. Decompose B = B1 B2 (not rank

truncations) with B1 ∈ Rn×t, B ∈ Rt×m, and rkB1 = rkB2 = t. Because V = [v1 . . . vm] has m > t linearly
independent and orthogonal columns, then there is a nontrivial vector w in

span{v1, . . . , vt+1} ∩ nullB2 ̸= ∅, (somewhat subtle)

say
w = γ1 v1 + · · ·+ γt+1 vt+1

with ∥w∥2 = 1, i.e., with γ2
1+ · · ·+γ2

t+1 = 1. Enumerate the orthonormal columns U = [u1 · · · un]. Compute

(A−B)w = Aw −B1����:0
(B2 w) = σ1 γ1 u1 + · · ·+ σt+1 γt+1 ut+1.

Then using the supremum definition of the operator norm, we can lower bound

∥A−B∥2op ≥ ∥(A−B)w∥22 = σ1 γ
2
1 + · · ·+ σ2

t+1 γ
2
t+1 ≥ σ2

t+1 = ∥A−Ar∥2op.

Proof of the Frobenius case. For SVD A = U ΣV T , we have the proposed minimum (in the Frobenius norm)

∥A−Ar∥2 = ∥Σ− Σr∥2 =
∑

k≥r+1

(
σk(A)

)2
.

Let B ∈ Rn×m
≤r , where we aim to estimate ∥A − B∥2. By the triangle inequality of the operator norm (i.e.,

the largest singular value), let k ∈ Z≥1 and estimate

σk+r(A) = σ1(A−Ar+k−1)

≤ σ1

(
A− [(A−B)k−1 +Br]

)
(rk((A−B)k−1 +Br) ≤ r + k + 1)

= σ1

(
(A−B)− (A−B)k−1

)
(B ∈ Rn×m

≤r )

= σk(A−B).
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Thus,

∥A−Ar∥2 =
∑

k≥r+1

σk(A)2 =
∑
k≥1

σk+r(A)2 ≤
∑
k≥1

σk(A−B)2 = ∥A−B∥2,

as desired.

3.2 Geometric Eckart-Young: outline

We now give a geometric proof, which is technically more subtle than the presentation given by [BKS24].
We want to optimize over Rn×m

≤r , which is an algebraic variety and a stratified smooth manifold. But Rn×m
≤r

is itself not a smooth manifold. (The tangent spaces — as defined through the derivatives of smooth curves
— do not all have the same dimension as linear spaces.) However, by being stratified, we mean that

Rn×m
≤r =

r⊔
t=0

Rn×m
=t

with each Rn×m
=t a smooth embedded Riemannian submanifold of Rn×m, endowed with the Frobenius inner

product. The advantage of working in a Riemannian submanifold is the added Euclidean geometry.
Namely, we can talk about tangent and normal planes (instead of the more general notion of tangent

and normal cones). Essentially, we may optimize on each Rn×m
=t , t ∈ {0, . . . , r}, and then we choose the best

solution, which apparently corresponds to t = r. To discuss this geometry, we discuss some more background
from [Bou23].

3.3 Optimization on Riemannian submanifolds ⇝ Lagrange multipliers

We consider a motivational example. Consider M = S1 ⊆ R2 endowed with the usual Euclidean inner
product, and define

f : S1 → R f : R2 → R
(x, y) 7→ y (x, y) 7→ y

∇f =? ∇f = (0, 1).

We want to optimize
max
p∈S1

f(p).

Our key idea is to look at the gradient. We visualize a couple of cases. The main upshot is that the projected
gradient gives us information about how to locally optimize f .

(a) Nonzero projected gradient. (b) Zero projected gradient.

Notation 3.9. Let (M, ⟨·, ·⟩) be a smooth regular embedded Riemannian submanifold of Rn. Let f : M → R
be smooth, i.e., we have an open U ⊆ M and a smooth extension f : U → R with f |M = f . Let p ∈ M . Let
c :⊆ R → M be a smooth curve with c(0) = p.
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Definition 3.10 (First order critical). We say that p ∈ M is first order critical for f if for all smooth curves
c with c(0) = p, we have

d

dt

∣∣∣
t=0

f
(
c(t)

)
= 0. (f ◦ c :⊆ R → R)

Definition 3.11 (Riemannian gradient). Let p ∈ M . We call ∇f(p) ∈ TpM the Riemannian gradient of f
at p if we have the Riesz representation

Df(p)[v] = ⟨∇f(p), v⟩, ∀v ∈ TpM,

i.e.,
d

dt

∣∣∣
t=0

f
(
c(t)

)
= ⟨∇f(p), ċ(0)⟩, ∀c smooth with c(0) = p.

Note that if c is smooth with c(0) = p, we may form a first order Taylor expansion:

f
(
c(t)

)
= f

(
c(0)

)
+ (f ◦ c)′(0) t+ o(t)

= f(p) + ⟨∇f(p), ċ(0)⟩ t+ o(t).

So, if ∇f(p) = 0 (in TpM), then it is not clear if moving forwards or backwards along (arbitrary) c will
increase or decrease f . For computation, we have the following geometric intuition.

Theorem 3.12. With proj the projection operator onto a linear space, the Riemannian gradient is given by

∇f(p) = projTpM ∇f(p).

Proof. By the usual Euclidean chain rule

(f ◦ c)′(0) = (f ◦ c)′(0) = ⟨∇f(p), ċ(0)⟩.

The problem is that the Euclidean gradient ∇f(p) is mostly likely not in the tangent space TpM . Be-
cause TpM is a linear subspace of Rn, we may decompose ∇f(p) into tangential and orthogonal (normal)
components, say ∇f(p) and Nf(p), respectively. Then

(f ◦ c)′(0) = ⟨∇f(p) + Nf(p), ċ(0)⟩

= ⟨∇f(p), ċ(0)⟩+�������:0
⟨Nf(p), ċ(0)⟩

= ⟨∇f(p), ċ(0)⟩.

Because c is arbitrary, we have shown the claim.

Theorem 3.13. If p is a minimizer of f , then ∇f(p) = 0 ∈ TpM , i.e., ∇f(p) ∈ NpM .

Proof. Duh.

Proposition 3.14. Define f : Rn×m
=t → R by f(B) = ∥A−B∥2. Then the critical points B are characterized

by their normal spaces: B is a critical point if and only if A ∈ B +NBRn×m
=t .

Proof. Let B(t) be a smooth path in Rn×m
=t . Compute the differential

d

dt

∣∣∣
t=0

∥A−B(t)∥2 =
d

dt

∣∣∣
t=0

n∑
k=1

m∑
ℓ=1

(
ak,ℓ − bk,ℓ(t)

)2
=

n∑
k=1

m∑
ℓ=1

(
bk,ℓ(0)− ak,ℓ

)
ḃk,ℓ(0)

= ⟨B −A, Ḃ⟩.

So, our first order critical condition requires B −A ∈ NBRn×m
=t .

8



3.4 Geometric Eckart-Young: refined outline

We take a stratified inverse approach.

(1) Let B ∈ Rn×m
=t , t ∈ {0, . . . , r}, and compute the normal space NBRn×m

=t .

(2) Let A ∈ Rn×m
>r , for the nontrivial case.

(3) Minimize over B ∈ Rn×m
=t such that A ∈ B +NBRn×m

=t , say Bt.

(4) Choose mint∈{0,...,r} ∥A−Bt∥2.

This construction obviously produces a minimizer, if a minimizer exists. We outline existence. In the
Frobenious norm (sum of squares of matrix entries), we have ∥A−B∥2 → ∞ as B → ∞. So, we may choose
R > 0 large enough such that all ∥B∥ > R with B ∈ Rn×m

≤r have ∥A− 0∥2 < ∥A− B∥2 (where 0 ∈ Rn×m
≤r ).

Next, Rn×m
≤r is closed in (Rn×m, ∥ · ∥). If we have a sequence Bk ∈ Rn×m

≤r and if Bk → B, then we are not
going to gain any extra nonzero singular values, by continuity. (We can lose singular values, but not gain
one.) Then Rn×m

≤r ∩B(0, R) is closed and bounded, and consequently B 7→ ∥A−B∥2 achieves its minimum,
namely in the interior.

Because we have the partition Rn×m
≤r =

⊔r
t=0 R

n×m
=t , our minimizer must lie on one of the manifolds

Rn×m
=t . So, it suffices to minimize over the normal spaces in all the Rn×m

=t , which is our first order optimality
condition.

3.5 Normal spaces of Rn×m
=t

To compute the normal spaces of Rn×m
=t , it is productive to understand its dimension. So, we compute

some “charts”. For a Riemannian manifold, we look for smooth F : Rn×m → Rd such that F−1(0) =
Rn×m

=t . Certainly F (B) = rk(B)− t is a natural choice. But the rank function is integer valued, and hence
not continuous, and hence not smooth. (So, a differential doesn’t exist to give us our tangent spaces.)
Alternatively, we can define a collection of these F about each entry in Rn×m

=t .
Let B ∈ Rn×m

=t . Then B has an invertible t× t submatrix, say that it is in the upper left:

B =

[
B1,1 B1,2

B2,1 B2,2

]
with B1,1 ∈ GL(t,R), B1,2 ∈ Rt×(m−t), B2,1 ∈ R(n−t)×t, and B2,2 ∈ R(n−t)×(m−t). Because B has rank t,

then the columns of

[
B1,2

B2,2

]
are a linear combination of the full rank columns

[
B1,1

B2,1

]
, say

[
B1,2

B2,2

]
=

[
B1,1

B2,1

]
W, W ∈ Rt×(m−t).

Then
W = B−1

1,1B1,2 =⇒ B2,2 = B2,1 B
−1
1,1 B1,2.

Then we propose F : U → R(n−t)×(m−t), with U open, defined by

F (B) = B2,1 B
−1
1,1 B1,2 −B2,2, U =

{
B ∈ Rn×m : B =

[
B1,1 B1,2

B2,1 B2,2

]
, detB1,1 ̸= 0

}
.

Certainly F is nice and smooth, and its differential has full rank: compute

DF (B)[V ] = V2,1 B
−1
1,1B1,2 +B2,1 B

−1
1,1 V1,2 +B2,1 B

−1
1,1 V1,1 B

−1
1,1 B1,2 − V2,2,

where we set V1,1 = 0, V1,2 = 0, and V2,1 = 0 to demonstrate the full rank DF (B)[V ] = V2,2 with V ∈ Rn×m

arbitrary. Thus, F is a smooth local defining zero function for B ∈ Rn×m
=t . Note that we need a different F

depending on the entry positions of the invertible t× t submatrix.
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This also shows the dimension of Rn×m
=t :

dimRn×m
=t = dimnullF

= nm− (n− t) (m− t)

= t (n+m− t).

For B ∈ Rn×m
=t , we have dimTBRn×m

=t = t (n+m− t), and consequently

dimNBRn×m
=t = (n− t) (m− t).

So, we are looking for (n − t) (m − t) linearly independent (e.g., orthogonal) matrices to span the normal
space NBRn×m

=t .
Let B be a smooth path through Rn×m

=t . Then we may factor B = RS with R ∈ Rn×t
=t and S ∈ Rt×m

=t

both of full rank. Compute
Ḃ = Ṙ S +R Ṡ

with Ṙ ∈ Rn×t ad S ∈ Rt×m arbitrary. We add rows [ST sT1 sT2 . . . sTm−t]
T ∈ Rm×m with the sk ∈ Rm

orthonormal to S and the other sℓ. Similarly, orthonormally extend the columns [Rr1 r2 . . . rn−t] ∈ Rn×n,
each rk ∈ Rn. Then for the (n− t) (m− t) vectors rk s

T
ℓ , we have the following Frobenious orthogonality:

⟨Ḃ, rk s
T
ℓ ⟩ = tr

(
Ḃ (rk sℓ)

T
)

= tr
(
(Ṙ S +R Ṡ) sℓ r

T
k

)
= tr

(
rTk (Ṙ S +R Ṡ) sℓ

)
= tr

(
rTk Ṙ���*0

(S sℓ) +�
���*

0
(rTk R) Ṡ sℓ

)
= 0.

Note that the rk s
T
ℓ are orthogonal, via a similar argument. Thus,

Observation 3.15.

NBRn×m
=t = span

{
rk s

T
ℓ : k ∈ {1, . . . ,m− t}, ℓ ∈ {1, . . . , n− t}

}
.

3.6 Geometric Eckart-Young: the main argument

Now, we begin the minimization procedure over the first order optimality condition. Let A ∈ Rn×m
>r , and let

0 ≤ t ≤ r. On Rn×m
=r , let B be a critical point to ∥A−B∥2, i.e., let A ∈ B+NBRn×m

=t . Due to the orthogonal
invariance of the Frobenious inner product, we may take the SVD of B to write B = block diag(σ1, . . . , σt)
with σ1 ≥ . . . ≥ σt > 0. Moreover, we can take our orthogonal spanning set of NBRn×m

=t to be the standard
basis:

NBRn×m
=t = span

{
e
(n)
k (e

(m)
ℓ )T : k ∈ {t+ 1, . . . ,m}, ℓ ∈ {t+ 1, . . . , n}

}
.

(This is only slightly subtle. In essence, we have the direct sum decomposition TBRn×m
=t ⊕NBRn×m

=t = Rn×m,
and we are using an orthogonal transformation to get disjoint standard bases for these two blocks.) So, for
some basis coefficients ak,ℓ, we have the form

A = B +

n∑
k=t+1

m∑
ℓ=t+1

ak,ℓek e
T
ℓ =:

[
Σ 0
0 AN

]
.

Write the SVD AN = UN ΣN V T
N , with ΣN diagonal. Consequently,

∥A−B∥2 = ∥
[
Σ 0
0 AN

]
−

[
Σ 0
0 0

]
∥2 = ∥

[
0 0
0 AN

]
∥2

= ∥AN∥2 = ∥ΣN∥2 (orthogonal invariance)

= sum of squares of diagonal entries.
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Interpretation: if B ∈ Rn×m
=t is a first order critical point of ∥A − ·∥2, then B shares t singular values of

A, and the loss function evaluation ∥A − B∥2 is equal to the sum of the squares of the remaining singular
values of A. Therefore, the rank t truncation At provides a lower bound on the first order critical points, as
desired.
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