POLYHEDRAL HOMOTOPY IN COX COORDINATES

T. DUFF, S. TELEN, E. WALKER, AND T. YAHL

Abstract. We introduce the Cox homotopy algorithm for solving a sparse system of polynomial equations on a compact toric variety X_Σ. The algorithm lends its name from a construction, described by Cox, of X_Σ as a GIT quotient $X_\Sigma = (\mathbb{C}^k \setminus Z) \sslash G$ of a quasi-affine variety by the action of a reductive group. Our algorithm tracks paths in the total coordinate space \mathbb{C}^k of X_Σ and can be seen as a homogeneous version of the standard polyhedral homotopy, which works on the dense torus of X_Σ. It furthermore generalizes the commonly used path tracking algorithms in (multi)projective spaces in that it tracks a set of homogeneous coordinates contained in the G-orbit corresponding to each solution. The Cox homotopy combines the advantages of polyhedral homotopies and (multi)homogeneous homotopies, tracking only mixed volume many solutions and providing an elegant way to deal with solutions on or near the special divisors of X_Σ. In addition, the strategy may help to understand the deficiency of the root count for certain families of systems with respect to the BKK bound.

1. Introduction

Our aim is to compute the isolated solutions of a polynomial system $\hat{F}(x) = 0$, where $\hat{F} = (\hat{f}_1(x), \ldots, \hat{f}_n(x))$ and $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$. We are particularly concerned with the case where some isolated solutions of $\hat{F}(x) = 0$ lie at or near infinity, as such systems may present challenges for standard homotopy algorithms. To make this precise, one must consider solutions in a suitable compactification of \mathbb{C}^n. Common choices for the compactification are the complex projective space \mathbb{P}^n or, more generally, a product of projective spaces $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$ where $n_1 + \cdots + n_s = n$. In each of these compactifications, the number of solutions to a generic system is a fixed number given by Bézout’s theorem or its extension to a product of projective spaces. This observation gives the basis for numerical homotopy continuation methods—specifically, the (homogeneous) total degree homotopy and more general multihomogeneous homotopies. These may be used to find all isolated solutions to \hat{F} starting from a suitably generic start system. Conventionally, the solutions to the (multi)homogeneous start system all lie in \mathbb{C}^n. To find solutions to \hat{F} at infinity, it is standard to use homogeneous coordinates and work in a generic affine patch.

In practice, infinite or nearly-infinite solutions to our target system \hat{F} present challenges for homotopy continuation. When tracking paths affinely, solutions of large magnitude are hard to estimate accurately. Premature path truncation may also occur, leading to a loss of solutions near infinity, see Experiment 3. Moreover, a large discrepancy between the number of start and target solutions may result in wasted computational resources. Homotopy methods have

2010 Mathematics Subject Classification. 13P15, 14M25, 68W30.

Key words and phrases. toric varieties; numerical algebraic geometry; polynomial systems; algebraic geometry; Cox rings; computer algebra; homotopy continuation.

Research of Walker and Yahl supported in part by Simons Collaboration Grant for Mathematics 636314. Work of Duff supported in part by the National Science Foundation under grant DMS-1719968.
solution space P^n $P^{n_1} \times \cdots \times P^{n_s}$ X_Σ

root count Bézout multihomogeneous Bézout BKK

graded ring $\mathbb{C}[x_0, \ldots, x_n]$ $\bigotimes_{i=1}^s \mathbb{C}[x_{i0}, \ldots, x_{in}]$ $\mathbb{C}[x_\rho \mid \rho \in \Sigma(1)]$

homotopy homogeneous homotopy multihomogeneous homotopy Cox homotopy

Figure 1. Schematic comparing (multi)homogeneous and Cox homotopies.

varying strengths when addressing these challenges. (Multi)homogeneous homotopies have the advantage of working in a compact space so that all paths converge. The largest issue with these homotopies, however, is that compactification to projective spaces may introduce singular, or nearly singular, solutions near infinity (see Example 2.1).

In contrast to the traditional (multi)homogeneous start systems, which usually depend only on the degrees of $\hat{f}_1, \ldots, \hat{f}_n$, the polyhedral homotopy introduced in [24, 47] takes the Newton polytopes of $\hat{f}_1, \ldots, \hat{f}_n$ into account. By taking the polynomial structure into account, the number of start solutions for the polyhedral homotopy is given by the BKK bound from the celebrated Bernstein-Khovanskii-Kushnirenko (BKK) theorem [8]. This bound is often tighter than the Bézout bound, so the polyhedral homotopy may track fewer extraneous paths off towards infinity than (multi)projective homotopies. As the polyhedral homotopy tracks points in the torus $(\mathbb{C}^*)^n$, the polyhedral endgame [25] may be used to detect solutions at infinity by numerically extrapolating coefficients of power series solutions and scaling issues can be addressed by the toric Newton method introduced in [46].

In this paper, we propose the Cox homotopy, which combines salient features of the multihomogeneous and polyhedral homotopies. A schematic situating our approach is given in Figure 1. Our chosen compactification is an n-dimensional, compact, normal toric variety X_Σ, where the polyhedral fan Σ refines the normal fan of each Newton polytope of $(\hat{f}_1, \ldots, \hat{f}_n)$. We may then regard a polynomial system as a section of a rank-n vector bundle on X_Σ. This section has a well-defined vanishing locus, which for a generic system consists of BKK-many isolated points (see Theorem 2.3).

This vanishing locus can be described globally by homogenizing the \hat{f}_i to the total coordinate ring or Cox ring $S = \mathbb{C}[x_\rho \mid \rho \in \Sigma(1)]$ of X_Σ (see Section 2.3). The polynomial ring S, together with its grading by the divisor class group of X_Σ and the irrelevant ideal, corresponds to the geometric construction of X_Σ as a GIT quotient $X_\Sigma = (\mathbb{C}^k \setminus Z) \sslash G$ of a quasi-affine variety by the action of an algebraic reductive group G (much like the Proj-construction for \mathbb{P}^n). Here we write k for the number of rays in the fan Σ. This construction was described by Cox in [12] and will be recalled briefly in Section 2.2. To represent points in X_Σ, we use the global coordinates x_ρ from the Cox construction, which we will refer to as Cox coordinates. In analogy with choosing an affine patch in (multi)homogeneous homotopies, we intersect the G-orbit corresponding to a point $p \in X_\Sigma$ with a linear space of complementary dimension in \mathbb{C}^k to pick out finitely many sets of Cox coordinates representing p. We will refer to these points in $\mathbb{C}^k \setminus Z$ as representatives for p.

We list the advantages of our Cox homotopy below. We note that strict subsets of this list are shared with other homotopy algorithms, but the Cox homotopy, to the authors’ knowledge, is unique in exhibiting all these advantages.

1Here, it is more natural to let \hat{f}_i be Laurent polynomials, as we will do in later sections.
1) By working in a compact space, we may compute solutions at infinity and reduce the risk of prematurely truncating paths (see Experiments 1 and 3).

2) We are flexible in our choice of linear space. We may mitigate poor scaling or ill-conditioning by choosing a random linear space or the normal space to a G-orbit (see Experiment 2).

3) The BKK bound never exceeds any multihomogeneous Bézout bound, and may be substantially smaller (see Experiments 1-4), minimizing the total number of paths tracked.

4) Generalizing the multihomogeneous case, a solution at infinity lies on a divisor where some Cox coordinate equals 0. This can be used to heuristically establish when there are fewer finite solutions than the BKK bound, by investigating certain face systems (see Experiment 4).

Contributions: Our main theoretical results are summarized in Theorem 1.1. We refer to Theorems 4.1 and 4.6 for more precise statements concerning the generic and degenerate cases, respectively.

Theorem 1.1. For a target system with prescribed supports, Algorithm 2 computes all isolated solutions in the simplicial locus $U \subset X_\Sigma$ (cf. Theorem 2.1) by tracking one representative in $\mathbb{C}^k \setminus \mathbb{Z}$ for each path in X_Σ. The total number of tracked paths in X_Σ is given by the BKK bound and hence is optimal with respect to the supports. Moreover, for a solution in the dense torus of X_Σ, any representative path converges to a set of homogeneous coordinates in $\mathbb{C}^k \setminus \mathbb{Z}$. For the case of a solution at infinity in $U \subset X_\Sigma$, the number of representative paths which converge is at least the degree of the corresponding G-orbit. This number can be computed explicitly by Proposition 3.6 as the suitably normalized volume of an orbit polytope which depends only on the zero-pattern of that solution’s Cox coordinates.

Theorem 4.6 is based on our analysis of simplicial G-orbits in Section 3, which may be of independent interest. We note that $U = X_\Sigma$ in the commonly encountered case where X_Σ is a simplicial toric variety such as a (multi)projective space, a weighted projective space or any toric surface. In general, the codimension of the subvariety $(X_\Sigma \setminus U)$ in X_Σ is at least 3. Theorem 1.1 states that for solutions outside of the torus, it may happen that not all representative paths converge to a set of homogeneous coordinates. To remedy this, we propose a specialized endgame (Algorithm 1), which detects bad representatives and switches to a converging representative at the very end of the path.

Besides our theoretical results, we demonstrate the advantages of the Cox homotopy enumerated above through a proof-of-concept implementation applied to a variety of examples. These experiments also illustrate the flexibility of our general approach. Finally, we provide some comparison, by way of an example, to the existing polyhedral homotopy methods and demonstrate the comparative robustness of our algorithm when faced with infinite or nearly-infinite solutions (see Experiment 3).

Significance: Although Cox’s GIT construction is a natural generalization of the familiar geometric quotient $\mathbb{P}^n = (\mathbb{C}^{n+1} \setminus \{0\})/(\mathbb{C} \setminus \{0\})$, we believe the application to homotopy continuation is novel. Most similar is the toric Newton method in [46] from 2000, where Verschelde introduced a homogenization based on the Newton polytopes of the system. Unlike the homogenization used in this paper, which is based on [12], Verschelde’s procedure uses both homogeneous and toric variables and is therefore not a homogenization into the total coordinate ring. In essence, Verschelde’s toric Newton algorithm is a generalized Newton iteration based
on dynamic affine patch selection (i.e., dynamic scaling), and is proposed as a postprocessing step for paths tracked with traditional polyhedral homotopy. By contrast, we track solution paths in X_{Σ} via an explicit homotopy in the total space \mathbb{C}^k of the Cox construction—see Remark 2.2 for further discussion of differences. We describe the geometric and computational consequences and suggest one concrete approach for dynamic patching that fits naturally in our conceptual framework. Our work also complements the recent use of Cox coordinates for dealing with non-toric solutions in a robust manner in numerical algebraic normal form methods [41, 42, 7]. Finally, we note the role played by toric compactifications, albeit in a non-GIT setting, in the complexity-theoretic study of sparse polynomial system solving, such as in the papers [31, 32, 33]. Our experiments paint a picture complementary to these works, showing that toric compactifications can be suitable in practical computing scenarios.

Organization: In Section 2 we recall the necessary background on homotopy continuation, toric varieties, and the Cox construction. Section 3 describes the closure of G-orbits in \mathbb{P}^k. In Section 4, we state our main theorems (Theorems 4.1 and Theorem 4.6) and we present the Cox homotopy algorithm (Algorithm 2), as well as an algorithm for orthogonal slicing (Algorithm 4). In Section 5 we give examples which demonstrate the advantages of our algorithms and compare the Cox homotopy to the polyhedral homotopy.

2. Preliminaries

2.1. Background on homotopy continuation. A great variety of homotopy continuation methods exist, all of which adhere to the same setup—a system whose solutions are known (a start system) is used to solve some other system (a target system). Popular implementations include Bertini [6], HOM4PS-3 [11], HomotopyContinuation.jl [9], NAG4M2 [30], and PHCpack [45]. The numerical predictor-corrector methods lying at the core of homotopy continuation are treated at length in [1]. In the context of polynomial systems, the standard references are [35, 39, 5].

For our purposes, a homotopy $\mathcal{H}(x; \tau)$ in variables $x = (x_1, \ldots, x_n)$ consists of polynomials $H_1(x; \tau), \ldots, H_n(x; \tau)$ depending on an additional tracking parameter τ. We use the convention that the start and target system are given by $G(x) = \mathcal{H}(x, 1)$ and $F(x) = \mathcal{H}(x, 0)$, respectively. Thus, from any start solution $x_0 \in \mathbb{C}^n$ satisfying $G(x_0) = 0$, homotopy continuation seeks to numerically approximate solution paths $x(\tau)$ satisfying the initial-value problem

$$\frac{\partial \mathcal{H}}{\partial x} \frac{\partial x}{\partial \tau} = -\frac{\partial \mathcal{H}}{\partial \tau}, \quad x(1) = x_0. \quad (1)$$

In the terminology of [22, Def. 4.5], a solution path $x(\tau)$ is said to be trackable on an interval $I \subset [0, 1]$ if the Jacobian $\partial \mathcal{H}/\partial x$ is nonsingular at $(x(\tau), \tau)$ for all $\tau \in I$. Typically, a randomization scheme such as the well-known gamma trick is used so that $x(\tau)$ is trackable on $(0, 1]$ with probability-one. If $x(\tau)$ and $\tilde{x}(\tau)$ are distinct paths trackable on $I \subset [0, 1]$, then the paths are disjoint in the sense that $x(\tau) \neq \tilde{x}(\tau)$ for any $\tau \in I$. This follows from the inverse function theorem.

A trackable path on $(0, 1]$ converges to the endpoint $\lim_{\tau \to 0^+} x(\tau)$, provided that this limit exists, and otherwise diverges. To eliminate divergent solution paths, we may instead compute endpoints in some compactification of \mathbb{C}^n. It is common practice to work in (multi)projective spaces.
The first step for doing homotopy continuation in (multi)projective space is to homogenize the equations in an appropriate way. We will use the following convention in the rest of this paper to distinguish between homogeneous and non-homogeneous notation.

Convention 1. We denote by $t = (t_1, \ldots, t_n)$ a set of affine/toric variables and by $x = (x_1, \ldots, x_k)$ a set of homogeneous variables. Equations or systems of equations that are not homogeneous will be indicated by a circumflex, which is dropped after homogenization. For instance, homogenizing the system $\hat{F}(t) = 0$ given by $\hat{f}_1(t) = \cdots = \hat{f}_n(t) = 0$, we obtain $F(x) = 0$ given by $f_1(x) = \cdots = f_n(x) = 0$.

By homogenizing the equations $\hat{f}_1 = \cdots = \hat{f}_n = 0$ in an appropriate way, one is essentially extending the given relations on \mathbb{C}^n to relations on $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$. The obtained equations have well-defined vanishing loci in $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$ because of their homogeneity with respect to the appropriate multigrading. This is equivalent to reinterpreting each of the \hat{f}_i as a section of a line bundle on (multi)projective space, such that the given equation corresponds to the trivialization of this section in one of the affine charts. The graded pieces of the multihomogeneous coordinate ring of $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$ are in one-to-one correspondence with (isomorphism classes of) line bundles. For instance, for each $d \in \mathbb{Z}$, $\mathcal{O}_{\mathbb{P}^n}(d)$ is the line bundle on \mathbb{P}^n whose global sections are represented by homogeneous polynomials (in the standard sense) of degree d. Here we give an example which shows the influence of the choice of compactification/homogenization on the solutions to the system.

Example 2.1. Consider $\hat{F}(t) = (\hat{f}_1(t), \hat{f}_2(t)) = 0$, where

$$\hat{f}_1 = 1 + t_1 + t_2 + t_1 t_2 + t_1^2 t_2 + t_1^3 t_2, \quad \hat{f}_2 = 2 + t_1 + t_1 t_2 + t_1^2 t_2.$$

The system $\hat{F}(t) = 0$ has three solutions in the algebraic torus $(\mathbb{C}^*)^2 \subset \mathbb{C}^2$, given by

$$(t_1, t_2) = (-1, -2), (e^{-\sqrt{-1} \pi / 4}, e^{\sqrt{-1} \pi / 4}), (e^{\sqrt{-1} \pi / 4}, e^{-\sqrt{-1} \pi / 4}).$$

We consider compactifying the solution space via the usual embeddings $\mathbb{C}^2 \hookrightarrow \mathbb{P}^2$ and $\mathbb{C}^2 \hookrightarrow \mathbb{P}^1 \times \mathbb{P}^1$.

A total-degree homotopy may be specified in homogeneous coordinates on \mathbb{P}^2 by

$$H(x_0, x_1, x_2; \tau) = (\gamma (1 - \tau) F(x_0, x_1, x_2) + \tau G(x_0, x_1, x_2),$$

where $\gamma \in \mathbb{C}^*$ is a generic constant, and the homogeneous start and target equations are given by $G(x) = (x_1^4 - x_0^4, x_2^3 - x_0^3)$ and $f_1(x_0, x_1, x_2) = x_1^4 f_1(x_1/x_0, x_2/x_0) \in \Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(4))$, $f_2(x_0, x_1, x_2) = x_2^3 f_2(x_1/x_0, x_2/x_0) \in \Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(3))$ respectively. To get a unique representative for each point in \mathbb{P}^2, we may augment H with a generic equation of the form $* x_0 + * x_1 + * x_2 = 1$, representing an affine patch on \mathbb{P}^2. There are 12 start solutions. Genericity of γ and the patch implies that solution paths satisfying Equation (1) are trackable, and we may recover homogeneous representatives of the toric solutions. The 9 remaining endpoints are $(x_0 : x_1 : x_2) = (0 : 0 : 1)$ (multiplicity-6) and $(0 : 1 : 0)$ (multiplicity-3).

For solutions in $\mathbb{P}^1 \times \mathbb{P}^1$, the system \hat{F} is homogenized in each variable separately. Thus, the homogeneous target system becomes $F = (x_0^3 y_0 \hat{f}_1(x_1/x_0, y_1/y_0), x_0^2 y_0 \hat{f}_2(x_1/x_0, y_1/y_0)) = (f_1, f_2)$ with $f_1 \in \Gamma(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(3, 1)), f_2 \in \Gamma(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(2, 1))$ and we may work on a patch defined by $* x_0 + * x_1 = 1$ and $* y_0 + * y_1 = 1$. The number of start solutions is now the corresponding multihomogeneous Bézout bound [39, Ch. 8, pp. 126–130], which in this case
equals five. Besides the toric solutions, the multihomogeneous homotopy recovers an additional solution at infinity: \((1 : 0) \times (0 : 1)\) with multiplicity 2.

Example 2.1 gives an instance of the family \(\tilde{F}(t_1, t_2; c) = (\tilde{f}_1(t_1, t_2; c), \tilde{f}_2(t_1, t_2; c))\) of systems with fixed monomial supports:

\[
\tilde{f}_1 = c_{11} + c_{12}t_1 + c_{13}t_2 + c_{14}t_1t_2 + c_{15}t_1^2t_2 + c_{16}t_1^3t_2, \quad \tilde{f}_2 = c_{21} + c_{22}t_2 + c_{23}t_1t_2 + c_{24}t_1^2t_2.
\]

A member of this family with generic coefficients \(c\) also has 3 toric solutions. Moreover, in either the \(\mathbb{P}^2\)-compactification or the \(\mathbb{P}^1 \times \mathbb{P}^1\)-compactification, the solutions at infinity remain exactly the same, respectively, for any generic choice of \(c\). Thus, it is natural to view these solutions at infinity as an artifact of the chosen compactification. Next to the introduction of (possibly infinitely many \([41, \text{Example 3.2.4}]\) spurious solutions at infinity, another issue with the standard compactifications is the artificial clustering effect of well-separated toric solutions, see for instance \([46, \text{Example 4.2}]\).

If we instead use the toric compactification \(X_\Sigma\) proposed in this paper, then we may homogenize \((\tilde{f}_1, \tilde{f}_2)\) as described in Section 2.3. For generic choices of the \(c_{ij}\), these homogenized equations only define 3 solutions on \(X_\Sigma\), all contained in its dense torus. For this example, the toric variety \(X_\Sigma\) turns out to be a Hirzebruch surface, as we will later see.

2.2. Toric varieties and the Cox construction. In this subsection we recall the construction of a toric variety as a GIT quotient. This construction was described by Cox in \([12]\), and it is referred to as the Cox construction. We should mention that the result was described earlier in the analytic category by Audin, Delzant and Kirwan, see \([3, \text{Chapter 6}]\) and references therein. For basic theory on toric varieties, the reader is referred to \([14, \text{Chapters 1-4}]\) or \([18]\). Paragraph 5.5.1 in \([41]\) contains a short introduction with some worked out examples.

Let \(T = (\mathbb{C}^*)^n\) be the algebraic torus of dimension \(n\). Its character and cocharacter lattices are denoted by \(M = \text{Hom}_{\mathbb{Z}}(T, \mathbb{C}^*) \simeq \mathbb{Z}^n\) and \(N = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Z})\) respectively. A normal toric variety \(X\) comes from a rational polyhedral fan \(\Sigma\) in \(N_\mathbb{R} = N \otimes \mathbb{R} \simeq \mathbb{R}^n\). We will denote the set of cones of dimension \(d\) in \(\Sigma\) by \(\Sigma(d)\). We are interested in the case where \(\Sigma\) is the normal fan \(\Sigma_{\mathcal{P}}\) of a full-dimensional lattice polytope \(\mathcal{P} \subset M_\mathbb{R} = M \otimes \mathbb{R} \simeq \mathbb{R}^n\). Such fans are complete, which means that \(\bigcup_{\sigma \in \Sigma_{\mathcal{P}}} \sigma = N_\mathbb{R}\), and the corresponding toric variety \(X\) is compact. We will sometimes denote \(X = X_{\Sigma_{\mathcal{P}}}\) to emphasize the correspondence between \(X\) and its fan.

Each \(\rho_i \in \Sigma(1)\) has a unique primitive ray generator \(u_i \in N\). It is convenient to collect the \(u_i\) in a matrix

\[
F = [u_1 \cdots u_k] \in \mathbb{Z}^{n \times k}.
\]

In our context, the \(u_i\) represent inward pointing facet normals of the polytope \(\mathcal{P}\). For this reason, we call \(F\) the facet matrix. This matrix represents a lattice homomorphism \(F : N' \to N\), where \(N' = \mathbb{Z}^k\), which is compatible with the fans \(\Sigma'\) and \(\Sigma\) in \(N'_\mathbb{R}\) and \(N_\mathbb{R}\) respectively. Here \(\Sigma'\) is the fan of \(\mathbb{C}^k\) (i.e. the positive orthant in \(\mathbb{R}^k\) and all its faces), with some cones missing. It follows that \(F\) gives a toric morphism \(\pi : X_{\Sigma'} \to X_{\Sigma}\), where \(X_{\Sigma'} = \mathbb{C}^k \setminus Z\) and \(Z\) is a union of coordinate subspaces. In this setting, the affine space \(\mathbb{C}^k\) is called the total coordinate space and \(Z\) is the base locus. The base locus is defined by a monomial ideal \(B\) in the coordinate ring \(S = \mathbb{C}[x_1, \ldots, x_k]\) of \(\mathbb{C}^k\):

\[
B = \left\langle \prod_{i \text{ s.t. } \rho_i \not\in \sigma \sigma} x_i \mid \sigma \in \Sigma(n) \right\rangle \subset S \quad \text{and} \quad Z = V_{\mathbb{C}^k}(B).
\]
The ideal B is also called the **irrelevant ideal** of S. Restricting the morphism π to the torus $(\mathbb{C}^*)^k$ we get the Laurent monomial map

$$ (2) \quad \pi|_{(\mathbb{C}^*)^k} = F \otimes_{\mathbb{Z}} \mathbb{C}^* : (\mathbb{C}^*)^k \to T $$

where $(z_1, \ldots, z_k) \mapsto (z_{F_1}, \ldots, z_{F_n})$ (this uses the short notation $z^a = z_1^{a_1} \cdots z_k^{a_k}$ and $F_{i,z}$ for the i-th row of F). The kernel of $\pi|_{(\mathbb{C}^*)^k}$ (as a group homomorphism) is a subgroup $G \subset (\mathbb{C}^*)^k$ which acts on $\mathbb{C}^k \setminus Z$ and the morphism π is constant on G-orbits. The following theorem uses some terminology for GIT quotients from [14, Section 5.0].

Theorem 2.1 ([12]). The morphism $\pi : \mathbb{C}^k \setminus Z \to X_\Sigma$ coming from $F = [u_1 \cdots u_k]$ is an almost geometric quotient for the action of G on $\mathbb{C}^k \setminus Z$. Moreover, the open subset $U \subset X_\Sigma$ for which $\pi|_{\pi^{-1}(U)}$ is a geometric quotient is the largest simplicial toric subvariety of X, which is such that $(X_\Sigma \setminus U)$ has codimension at least 3 in X_Σ.

Important for us is that this means that there is a very large Zariski open subset $U \subset X_\Sigma$ such that G-orbits in $\pi^{-1}(U)$ are in one-to-one correspondence with points of U. The fan of U is the subfan of Σ consisting of all its simplicial cones.

Example 2.2. A familiar example is given by the construction of the projective space $X_\Sigma = \mathbb{P}^n$ as a quotient of $\mathbb{C}^{n+1} \setminus \{0\}$, in which case $\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ is given by $(x_1, x_2, \ldots, x_{n+1}) \mapsto (x_1 : x_2 : \cdots : x_{n+1})$. Since \mathbb{P}^n is simplicial, this quotient is geometric, i. e. $X_\Sigma = U$. \(\triangle\)

In order to interpret S (with its irrelevant ideal B) as the homogeneous coordinate ring or Cox ring of our toric variety X_Σ, we equip it with a grading such that the vanishing locus in $\mathbb{C}^k \setminus Z$ of homogeneous elements is stable under the action of G. The grading is by the divisor class group $\text{Cl}(X_\Sigma)$ of X_Σ, which is the group of Weil divisors modulo linear equivalence. For toric varieties, this group is easy to describe explicitly. Let D_1, \ldots, D_k be the torus invariant prime divisors on X_Σ corresponding to ρ_1, \ldots, ρ_k respectively. We have the exact sequence

$$ (3) \quad 0 \to M \xrightarrow{F^\top} \bigoplus_{i=1}^k \mathbb{Z} \cdot D_i \xrightarrow{\mathcal{P}} \text{Cl}(X_\Sigma) \to 0, $$

where the map F^\top sends a character to its divisor (we will think of this map as a lattice map $\mathbb{Z}^n \to \mathbb{Z}^k$ given by the transpose of our matrix F) and \mathcal{P} takes a torus invariant divisor to its class in $\text{Cl}(X_\Sigma)$ (see [14, Theorem 4.1.3]). This shows that $\text{Cl}(X_\Sigma) \simeq \mathbb{Z}^k / \text{im } F^\top$ and every element of $\text{Cl}(X_\Sigma)$ can be written as the class $[D]$ of some torus invariant divisor $D = \sum_{i=1}^k a_i D_i$. For an element $\alpha = \sum_{i=1}^k a_i D_i \in \text{Cl}(X_\Sigma)$, we define the vector subspace

$$ S_\alpha = \bigoplus_{F^\top m+a \geq 0} \mathbb{C} \cdot x^{F^\top m+a}, $$

where the sum ranges over all $m \in M$ satisfying $\langle u_i, m \rangle + a_i \geq 0$ (here $\langle \cdot, \cdot \rangle$ denotes the usual pairing between $N \simeq \mathbb{Z}^n$ and its dual $M \simeq \mathbb{Z}^n$). One can check that this definition is independent of the chosen representative for α and if $f = \sum_{F^\top m+a \geq 0} c_m x^{F^\top m+a} \in S_\alpha$, then for $g \in G \subset (\mathbb{C}^*)^k$ we have

$$ f(g \cdot x) = \sum_{F^\top m+a \geq 0} c_m (g \cdot x)^{F^\top m+a} = g^a f(x). $$
It follows that \(f \in S_\alpha \) has a well defined vanishing locus
\[
V_{X_\Sigma}(f) = \{ p \in X_\Sigma \mid f(x) = 0 \text{ for some } x \in \pi^{-1}(p) \}
\]
and this definition extends trivially to \(V_{X_\Sigma}(f_1, \ldots, f_s) = \bigcap_{i=1}^s V_{X_\Sigma}(f_i) \) for elements \(f_i \in S_{\alpha_i} \). An element \(f \in S_\alpha \) is called homogeneous of degree \(\alpha \). The ring \(S \), with its grading by \(\text{Cl}(X_\Sigma) \) and its irrelevant ideal \(B \), is called the Cox ring of \(X_\Sigma \). In conclusion, we summarize some terminology related to the Cox construction of \(X_\Sigma \) in the table below.

<table>
<thead>
<tr>
<th>Algebra</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox ring</td>
<td>(S = \bigoplus_{\alpha \in \text{Cl}(X_\Sigma)} S_\alpha) (\xrightarrow{\text{MaxSpec}(\cdot')}) (\mathbb{C}^k) total coordinate space</td>
</tr>
<tr>
<td>irrelevant ideal</td>
<td>(B) (\xrightarrow{\text{V}_{\text{ck}(\cdot')}()}) (\mathbb{Z}) base locus</td>
</tr>
<tr>
<td>class group</td>
<td>(\text{Cl}(X_\Sigma)) (\xrightarrow{\text{Hom}_{\mathbb{C}^r}(\cdot, \cdot')}) (G) reductive group</td>
</tr>
</tbody>
</table>

2.3. Homogenization of sparse polynomial systems. The standard homogenization used for sending polynomials to the multihomogeneous coordinate ring of \(\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s} \) generalizes nicely for the compact toric varieties \(X \) we consider in this paper and their Cox ring \(S \). Line bundles on \(X \) are in one-to-one correspondence with elements of the Picard group \(\text{Pic}(X) \subset \text{Cl}(X) \), consisting of Cartier divisors modulo linear equivalence [14, Chapter 4]. Sections of these line bundles are homogeneous polynomials in \(S \).

The homogenization procedure we will use is described in detail in Section 3 of [42]. We briefly recall how this works. Let \(\hat{f}_1, \ldots, \hat{f}_n \in \mathbb{C}[M] = \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}] \) be a given set of Laurent polynomials and let \(\mathcal{A}_1, \ldots, \mathcal{A}_n \) be their supports. That is, \(\hat{f}_i \) can be written as \(\hat{f}_i = \sum_{m \in \mathcal{A}_i} c_{i,m} t^m \) where \(c_{i,m} \neq 0 \). For \(i = 1, \ldots, n \), let \(\mathcal{P}_i = \text{conv}(\mathcal{A}_i) \) be the Newton polytope of \(\hat{f}_i \) (see for instance [13, Chapter 7, §1]). The Minkowski sum of these polytopes is denoted by \(\mathcal{P} = \mathcal{P}_1 + \cdots + \mathcal{P}_n \) and it is assumed to have dimension \(n \). The normal fan \(\Sigma_{\mathcal{P}} \) of \(\mathcal{P} \) gives the toric variety \(X = X_{\Sigma_{\mathcal{P}}} \). For each \(i \), there is a canonical way of associating a nef torus invariant Cartier divisor \(D_{\mathcal{P}_i} = \sum_{j=1}^k a_{i,j} D_i \) to \(\mathcal{P}_i \). The class of this divisor in \(\text{Pic}(X) \) is denoted by \(\alpha_i = [D_{\mathcal{P}_i}] \in \text{Pic}(X) \). The vector space of Laurent polynomials with Newton polytope \(\mathcal{P}_i \) is the vector space of sections of the vector bundle \(\mathcal{O}_X(\alpha_i) \) on \(X \) [14, Proposition 4.3.3]. Moreover, this vector space can be identified with the degree \(\alpha_i \) part of the Cox ring \(S \) of \(X \) [14, Proposition 5.3.7]. In summary, we have
\[
\bigoplus_{m \in \mathcal{P}_i \cap M} \mathbb{C} \cdot t^m \simeq \Gamma(X, \mathcal{O}_X(\alpha_i)) \simeq S_{\alpha_i}.
\]

The homogenization to the Cox ring of \(\hat{f}_i \) is given by the coefficients \(a_{i,j} \) defining \(D_{\mathcal{P}_i} \). Explicitly, we obtain the homogeneous polynomials \(f_i \) from \(\hat{f}_i \) by
\[
(4) \quad \hat{f}_i = \sum_{m \in \mathcal{A}_i} c_{i,m} t^m \mapsto f_i = \sum_{m \in \mathcal{A}_i} c_{i,m} x^{F^T m + a_i},
\]
where \(F \) the facet matrix. Note that since \(\mathcal{A}_i \subset \mathcal{P}_i \cap M \), we have that \(F^T m + a_i \geq 0 \), so that the \(f_i \) are indeed polynomials.

Remark 2.2. We note that the homogenization used in [46] differs from (4) in that the homogenized polynomials in [46] depend on the toric variables, as well as on the new, homogeneous variables. Moreover, each of the \(\hat{f}_i \) is ‘homogenized’ (in the sense of [46, Definition 2.1]) with
respect to its own Newton polytope. The idea is to use the homogenization variables as auxiliary coordinates that help to scale the solution paths in a clever way. Another difference is that the normal fans of the \mathcal{P}_i undergo a simplicial refinement in the symbolic step of the algorithm in [46]. This step is mentioned to be memory exhaustive in [46, Section 7.1], and the examples considered there are correspondingly small. In our setup, all of the \hat{f}_i are homogenized with respect to the same polytope \mathcal{P} and its normal fan need not be simplicial.

We will think of the n-tuple (f_1, \ldots, f_n) as a section of the rank n vector bundle $O_X(\alpha_1) \oplus \cdots \oplus O_X(\alpha_n)$ on X. The zero locus of this section is the vanishing locus $V_X(f_1, \ldots, f_n)$. It contains the points defined by $\hat{f}_1 = \cdots = \hat{f}_n = 0$ in T, denoted by $V_T(\hat{f}_1, \ldots, \hat{f}_n)$. Since $O_X(\alpha_1) \oplus \cdots \oplus O_X(\alpha_n)$ is a rank n vector bundle on a variety of dimension n, the expected dimension of $V_X(f_1, \ldots, f_n)$ is 0. A well-known result by Bernstein, Khovanskii and Kushnirenko tells us how many points to expect. The statement involves the mixed volume $\text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ of the polytopes $\mathcal{P}_1, \ldots, \mathcal{P}_n$.

Theorem 2.3 (BKK Theorem). Let $f_i \in S_{\alpha_i}$ be as above. The variety $V_X(f_1, \ldots, f_n)$ contains at most $\text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ isolated points on X. If $V_X(f_1, \ldots, f_n)$ is finite, then it consists of exactly $\text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ points, counting multiplicities. For generic choices of the coefficients of the f_i, the number of roots in $T \subset X$ is exactly equal to $\text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ and all roots have multiplicity one.

Proof. See [18, §5.5].

The number $\text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ is often referred to as the BKK bound. We are mainly interested in the case where (f_1, \ldots, f_n) defines points outside of T, that is, on the boundary $X \setminus T$ of the torus in X. To illustrate these examples of interest, we include the following example from [42].

Example 2.3. Consider the Laurent polynomials $\hat{f}_1, \hat{f}_2 \in \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}]$ given by

$$
\hat{f}_1 = 1 + t_1 + t_2 + t_1 t_2 + t_1^2 t_2 + t_1^3 t_2, \quad \hat{f}_2 = 1 + t_2 + t_1 t_2 + t_1^2 t_2,
$$

which is equal to the system in Example 2.1 up to the constant coefficient of \hat{f}_2. Although the BKK bound for the system $\hat{F} = (\hat{f}_1, \hat{f}_2) = 0$ equals $\text{MV}(\mathcal{P}_1, \mathcal{P}_2) = 3$, the point $(-1, -1)$ is the unique solution (with multiplicity 1) in $T = (\mathbb{C}^*)^2$. To explain this discrepancy with respect to the BKK bound, we extend the relations $\hat{f}_1 = \hat{f}_2 = 0$ to an appropriate toric variety. The polytopes and the fan are illustrated in Figure 2. The facet matrix F is

$$
F = [u_1 \ u_2 \ u_3 \ u_4] = \\
\begin{bmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & -1
\end{bmatrix}.
$$
The toric variety \(X = X_\Sigma \) is the Hirzebruch surface \(\mathcal{H}_2 \). The base locus in \(\mathbb{C}^4 \) is given by \(Z = V(\mathcal{C}_4(x_1, x_3)) \cup V(\mathcal{C}_4(x_2, x_4)) \). The divisor \(D_{\mathcal{H}_2} \) is \(D_{\mathcal{H}_2} = D_4 \) (i.e. \(a_{2,1} = a_{2,2} = a_{2,3} = 0, a_{2,4} = 1 \), or \(a_2 = (0, 0, 0, 1) \)). The homogenization of the monomials \(t^m \) in \(f_2 \) is given by \(F^T m + a_2 \):

\[
F^T \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},
\]

which gives \(f_2 = x_1 + x_2x_3^2 + x_1x_2x_3 + x_1^2x_3 \in S_{[D_4]} \). Analogously we obtain \(f_1 = x_3x_4 + x_1x_4 + x_2x_3^2 + x_1x_2x_3 + x_1^2x_3 + x_3^2x_2 \in S_{[D_3 + D_4]} \). The vanishing locus \(V_X(f_1, f_2) \) on \(X \) consists of three points, with Cox coordinates

\[
z_1 = (-1, -1, 1, 1), \quad z_2 = (0, -1, 1, 1), \quad z_3 = (1, -1, 0, 1).
\]

Hence, the relations \(f_1 = f_2 = 0 \) define three isolated points on \(X \), which is the expected number. Note that \(\pi(z_1) \) is the toric solution \((-1, -1)\) (\(\pi \) denotes the quotient \(\pi : \mathbb{C}^4 \setminus Z \to X \)) and the other solutions are on the boundary of the torus: \(\pi(z_2) \in D_1, \pi(z_3) \in D_3 \). \(\triangle \)

3. G-orbits in the Cox construction

Let \(X = X_\Sigma \) be a compact toric variety corresponding to a complete fan \(\Sigma \) and let \(U \subset X \) be as in Theorem 2.1. As mentioned in the introduction, our homotopy algorithm will track a set of Cox coordinates for a point \(p \in U \subset X \) by slicing the \(G \)-orbit \(\pi^{-1}(p) \) with a linear space of complementary dimension. In order to understand what this dimension is and how many representatives there are in such a linear space, this section is devoted to an explicit description of the dimension and degree of the projective closure of \(G \)-orbits \(G \cdot z \subset \mathbb{C}^k \setminus Z \) in the Cox construction.

3.1. Orbit parametrization

Taking \(\text{Hom}_Z(-, \mathbb{C}^*) \) of the exact sequence (3) gives the explicit description for \(G \),

\[
G = \ker \text{Hom}_Z(F^T, \mathbb{C}^*) = \{ g \in (\mathbb{C}^*)^k \mid g F_1 = \cdots = g F_n = 1 \},
\]

as a subgroup of \((\mathbb{C}^*)^k \). Our first goal is to parametrize the orbit

\[
G \cdot z = \{ g \cdot z = (g_1z_1, \ldots, g_kz_k) \in (\mathbb{C}^*)^k \mid g \in G \}
\]

for \(z \in \mathbb{C}^k \setminus Z \). Note that if \(\text{Cl}(X) \simeq \mathbb{Z}^{k-n} \) is free, then \(G = \text{Hom}_Z(\text{Cl}(X), \mathbb{C}^*) \simeq (\mathbb{C}^*)^{k-n} \) is a torus. In general, \(G \) is a quasitorus of dimension \(k-n \), i.e. it is isomorphic to the direct sum of a torus and a finite abelian group.

To find the orbit parametrization of \(G \cdot z \), the first step is to compute the Smith normal form of the transpose of the facet matrix \(F^T \in \mathbb{Z}^{k \times n} \):

\[
P F^T Q = \text{diag}(s_1, \ldots, s_n),
\]

where \(\text{diag}(s_1, \ldots, s_n) \) is a diagonal matrix of size \(k \times n \) with the invariant factors \(s_i \) of \(F^T \) on its diagonal. We note that \(s_i \neq 0 \) since \(F \) comes from a complete fan. The submatrix \(P'' \) of \(P \) containing the last \(k-n \) rows of \(P \) is a \(\mathbb{Z} \)-basis for the kernel of \(F : \mathbb{Z}^k \to N \). We denote the submatrix of \(P \) containing its first \(n \) rows by \(P' \). We have that

\[
\text{Cl}(X) \simeq \mathbb{Z}^k / \text{im } F^T \simeq \mathbb{Z}/s_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/s_n \mathbb{Z} \oplus \mathbb{Z}^{k-n}.
\]
Note that, since the matrix P is a representation of the map \mathcal{P} from (3), we can write this isomorphism explicitly as

$$
\sum_{i=1}^k a_i D_i \mapsto ((P' a)_1 + s_1 \mathbb{Z}, \ldots, (P' a)_n + s_n \mathbb{Z}, (P'' a)_1, \ldots, (P'' a)_{k-n})
$$

where $(P' a)_i$ is the i-th entry of the matrix-vector product $P' a$, and likewise for $P'' a$. We also have that

$$G = \text{Hom}_\mathbb{Z}(\text{Cl}(X), \mathbb{C}^*) = W_1 \oplus \cdots \oplus W_n \oplus (\mathbb{C}^*)^{k-n}$$

where $W_i \subset \mathbb{C}^*$ is the multiplicative group of s_i-th roots of unity. The inclusion $G \hookrightarrow (\mathbb{C}^*)^k$ is the dual map $\mathcal{P}^\vee = \text{Hom}_\mathbb{Z}(\mathcal{P}, \mathbb{C}^*)$ of (5), given by

$$G \simeq \left(\bigoplus_{i=1}^n W_i\right) \oplus (\mathbb{C}^*)^{k-n} \to (\mathbb{C}^*)^k, \quad (w, \lambda) \mapsto (w_{P'_{1,i}}, \lambda_{P'_{1,i}}, \ldots, w_{P'_{k,i}}, \lambda_{P'_{k,i}}),$$

where $P'_{i,j}$ denotes the i-th column of P' and likewise for P''. We conclude that $G \subset (\mathbb{C}^*)^k$ is a union of tori isomorphic to

$$T_{P''} = \{ (\lambda_{P''_{1,i}}, \ldots, \lambda_{P''_{k,i}}) \in (\mathbb{C}^*)^k \mid \lambda \in (\mathbb{C}^*)^{k-n} \} \simeq (\mathbb{C}^*)^{k-n}.$$

Moreover, the following statement follows immediately from this discussion.

Lemma 3.1. For $z \in \mathbb{C}^k \setminus Z$, the orbit $G \cdot z$ of $z = (z_1, \ldots, z_k)$ is parametrized by the map

$$\left(\bigoplus_{i=1}^n W_i\right) \oplus (\mathbb{C}^*)^{k-n} \to \mathbb{C}^k \setminus Z \text{ given by } (w, \lambda) \mapsto (w_{P'_{1,i}} \lambda_{P'_{1,i}} z_1, \ldots, w_{P'_{k,i}} \lambda_{P'_{k,i}} z_k).$$

Remark 3.2. Note that the image of (6) is the orbit $G \cdot z$ of $z = (1, \ldots, 1)$.

For a subset $\mathcal{W} \subset \mathbb{C}^k \setminus Z$, we denote its Zariski closure in \mathbb{P}^k by

$$\overline{\mathcal{W}} = \{(1 : z_1 : \cdots : z_k) \in \mathbb{P}^k \mid (z_1, \ldots, z_k) \in \mathcal{W}\} \subset \mathbb{P}^k.$$

By applying Lemma 3.1 to $\overline{G \cdot z}$, we immediately realize the following corollary.

Corollary 3.3. For $z \in \mathbb{C}^k \setminus Z$, the dimension and degree of the projective variety $\overline{G \cdot z}$ depend only on which $(\mathbb{C}^*)^k$-orbit z belongs to. Equivalently, they only depend on the set of indices $\mathcal{I} = \{i \mid z_i \neq 0\}$.

3.2. Orbit dimension

By Corollary 3.3, the dimension of $\overline{G \cdot z}$ is constant on the dense torus $(\mathbb{C}^*)^k$ of $\mathbb{C}^k \setminus Z$. In fact, it is constant on an even larger open subset of X by some results from geometric invariant theory.

Lemma 3.4. For $z \in \pi^{-1}(U) \subset \mathbb{C}^k \setminus Z$, where U is as in Theorem 2.1, we have $\dim \overline{G \cdot z} = k - n$.

Proof. The set $\pi^{-1}(U) \subset \mathbb{C}^k \setminus Z$ is the set of stable points for the action of G on $\mathbb{C}^k \setminus Z$ (these are the points z whose stabilizer G_z consists of finitely many points, see e.g. [10, Proposition 1.26] or [36, Chapter 1, §4]). Therefore $\dim G \cdot z = \dim \overline{G \cdot z} = \dim G = k - n$.

For points z outside of $\pi^{-1}(U)$, the orbit $G \cdot z$ might not be closed in $\mathbb{C}^k \setminus Z$, and a general formula for the dimension is given by $\dim G \cdot z = \dim G - \dim G_z$, where G_z is the stabilizer of G at z. The following example illustrates what may happen.
Example 3.1. Consider the toric threefold $X = X_{\Sigma}$ corresponding to a pyramid in \mathbb{R}^3 whose normal fan Σ has rays generated by the columns of

$$F = \begin{bmatrix} 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 1 & -1 & -1 & -1 & -1 \end{bmatrix} = [u_1 \ u_2 \ u_3 \ u_4 \ u_5].$$

The polytope and fan are illustrated in Figure 3. The irrelevant ideal is given by $B = \langle x_1, x_2 x_3, x_2 x_5, x_3 x_4, x_4 x_5 \rangle$. The corresponding two-dimensional base locus is $Z = V_{\mathbb{C}^k}(x_1, x_2, x_4) \cup V_{\mathbb{C}^k}(x_1, x_3, x_5)$. A Smith normal form computation yields

$$P' \left\{ \begin{array}{c} 0 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 0 \end{array} \right\} F^\top \left[\begin{array}{c} 1 \ 0 \ 1 \\ 0 \ 1 \ 1 \end{array} \right] = \left[\begin{array}{c} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \end{array} \right].$$

such that by Lemma 3.1 the orbit of $(z_1, z_2, z_3, z_4, z_5)$ is parametrized by

$$\quad (8) \quad (\lambda_1^2 \lambda_2^2 z_1, \lambda_1 z_2, \lambda_2 z_3, \lambda_1 z_4, \lambda_2 z_5), \quad (\lambda_1, \lambda_2) \in (\mathbb{C}^*)^2.$$

The subset $U \subset X$ for which $\pi^{-1}(U) \rightarrow U$ is geometric is the complement in X of the torus invariant point $p \in X$ corresponding to $\sigma = \text{cone}(\rho_2, \rho_3, \rho_4, \rho_5)$. It is clear that $z_{\{1\}} = (1, 0, 0, 0, 0) \in \pi^{-1}(p)$. We see from Equation (8) that the orbit $G \cdot z_{\{1\}}$ has dimension 1. This is the unique closed G-orbit in $\pi^{-1}(p)$, and one can check that the stabilizer $G_{z_{\{1\}}}$ is one-dimensional. Since σ is the smallest cone of Σ containing ρ_3 and ρ_5, we see that the $(\mathbb{C}^*)^5$-orbit

$$\quad (\mathbb{C}^*)^{\{1,2,4\}} = \{ (z_1, z_2, 0, z_4, 0) \mid (z_1, z_2, z_4) \in (\mathbb{C}^*)^3 \} \subset \mathbb{C}^5 \setminus Z$$

is contained in $\pi^{-1}(p)$. The same holds for ρ_2 and ρ_4. The fiber $\pi^{-1}(p)$ has dimension 3. From Equation (8) it is clear that the orbit $G \cdot z$ has dimension 2 for $z \in (\mathbb{C}^*)^{\{1,2,4\}}$. Moreover, these orbits are not closed in $\mathbb{C}^k \setminus Z$, as they contain $G \cdot z_{\{1\}}$ in their closure.
3.3. Orbit degree. For a finite set \(\mathcal{I} = \{\alpha_0, \ldots, \alpha_s\} \subset \mathbb{Z}^\ell \) we use the notation \(X_\mathcal{I} \subset \mathbb{P}^s \) for the projective toric variety obtained as the closure of the image of \((\mathbb{C}^*)^\ell \to \mathbb{P}^s \), where \((t_1, \ldots, t_\ell) \mapsto (t_1^{\alpha_0} : \cdots : t_\ell^{\alpha_s})\). We associate to \(\mathcal{I} \) the matrix \(A \) of \(\ell \)-tuples in \(\mathcal{I} \), i.e. \(A = [\alpha_0 \cdots \alpha_s] : \mathbb{Z}^{s+1} \to \mathbb{Z}^\ell \). One may compute the degree of the projective variety \(X_\mathcal{I} \) using Kushnirenko’s Theorem.

Theorem 3.5 (Kushnirenko’s theorem [29]). Let \(X_\mathcal{I} \subset \mathbb{P}^s \) be the projective toric variety defined by

\[
A = \begin{bmatrix}
1 & \cdots & 1 \\
m_0 & \cdots & m_s
\end{bmatrix} : \mathbb{Z}^{s+1} \to \mathbb{Z}^\ell.
\]

Let \(\Delta = \text{conv}(m_0, \ldots, m_s) \subset \mathbb{R}^{\ell-1} \) be the polytope obtained by taking the convex hull of the lattice points \(m_0, \ldots, m_s \in \mathbb{Z}^{\ell-1} \) and suppose that \(\Delta \) has dimension \(\ell - 1 \). Then,

\[
\deg X_\mathcal{I} = \frac{(\ell - 1)!}{q} \text{Vol}(\Delta),
\]

where \(\text{Vol}(\cdot) \) denotes the Euclidean volume and \(q \) is the lattice index of \(\text{im}([m_0 \cdots m_s] : \mathbb{Z}^{s+1} \to \mathbb{Z}^{\ell-1}) \) in \(\mathbb{Z}^{\ell-1} \). That is, for almost all choices of coefficients \(c_{ij} \in \mathbb{C} \), the system of equations

\[
\sum_{j=0}^s c_{ij} \lambda^{m_j} = 0, \quad i = \ell - 1
\]

has exactly \((\ell - 1)! \text{Vol}(\Delta)\) solutions \(\lambda \in (\mathbb{C}^*)^{\ell-1} \).

With the notation of Subsection 2.2, let \(\mathcal{J} \subset \{1, \ldots, k\} \) be a subset of indices such that there is a cone \(\sigma \in \Sigma \) containing all \(\rho_i \in \Sigma(1) \) for which \(i \notin \mathcal{J} \), and none of the other rays. Equivalently, \(\mathcal{J} \) is such that \(\text{cone}(e_i, i \notin \mathcal{J}) \in \Sigma' \), where \(e_i \) is the \(i \)-th standard basis vector of \(\mathbb{R}^k \). The \((\mathbb{C}^*)^k\)-orbit \(\{z \in \mathbb{C}^k \setminus \mathbb{Z} | z_i \neq 0, \text{ for all } i \in \mathcal{J} \text{ and } z_i = 0 \text{ for all } i \notin \mathcal{J}\} \) is denoted by \((\mathbb{C}^*)^\mathcal{J} \simeq (\mathbb{C}^*)^{\mathcal{J}'}\). We define the map \(\mathcal{P}^{\mathcal{J}} \) as the restriction of \(\mathcal{P} \) from (3) to \(\bigoplus_{i \in \mathcal{J}} \mathbb{Z} \cdot D_i \) and consider the exact sequence

\[
0 \longrightarrow \ker \mathcal{P}^{\mathcal{J}} \longrightarrow \bigoplus_{i \in \mathcal{J}} \mathbb{Z} \cdot D_i \stackrel{\mathcal{P}^{\mathcal{J}}}\longrightarrow \text{Cl}(X) \longrightarrow \text{coker} \mathcal{P}^{\mathcal{J}} \longrightarrow 0.
\]

Taking duals shows that \((\mathcal{P}^{\mathcal{J}})^* = \text{Hom}_\mathbb{Z}(\mathcal{P}^{\mathcal{J}}, \mathbb{C}^*) : G \to (\mathbb{C}^*)^{\mathcal{J}} \) is given in coordinates by

\[
G \simeq \left(\bigoplus_{i=1}^n W_i \right) \oplus (\mathbb{C}^*)^{k-n} \to (\mathbb{C}^*)^{\mathcal{J}} \simeq (\mathbb{C}^*)^{\mathcal{J}'} \quad (w, \lambda) \mapsto (w^{P^{\mathcal{J}',k}})_{i \in \mathcal{J}}.
\]

By Lemma 3.1, the image of \((\mathcal{P}^{\mathcal{J}})^* \) is the orbit \(G \cdot z_\mathcal{J} \) of \(z_\mathcal{J} = \sum_{i \in \mathcal{J}} e_i \), where \(e_i \) is the \(i \)-th standard basis vector of \(\mathbb{C}^k \). The closure \(\overline{G \cdot z_\mathcal{J}} \) is a union of a number of copies of the projective toric variety \(X_{\mathcal{J}_\mathcal{J}} \) where \(\mathcal{J}_\mathcal{J} \) is given by the columns of

\[
A_\mathcal{J} = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1
\end{bmatrix}^{\mathcal{J}'}
\]

and \(P''_{\mathcal{J}} \) is the submatrix of \(P'' \) containing the columns indexed by \(\mathcal{J} \).

Example 3.2. For \(\mathcal{J} = \{1, \ldots, k\} \), we have that \(X_{\mathcal{J}_\mathcal{J}} = T_{P''} \). Indeed,

\[
X_{\mathcal{J}_\mathcal{J}} = X_{\mathcal{J}_\mathcal{J}} := \left\{ (1 : \lambda_{1,1}^{P''} : \cdots : \lambda_{1,k}^{P''}) | \lambda \in (\mathbb{C}^*)^{k-n} \right\} \subset \mathbb{P}^k,
\]
where \(\mathcal{A} = \mathcal{A}_i = \{\alpha_0, \ldots, \alpha_k\} \subset \mathbb{Z}^{k-n} \) is given by the columns of
\[
A = A_i = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & P_n & \vdots & 1 \end{bmatrix}.
\]

The dimension of \(T_{P''} = X_{\mathcal{A}_i} \) is \(k - n \), by the fact that \(P'' \) has rank \(k - n \) and \([14, \text{Proposition } 2.1.2] \). For the interested reader, we point out that the Gale transform of the lattice points in \(\mathcal{A} \) consists of \(\{u_1, \ldots, u_k, -\sum_{i=1}^k u_i\} \), where \(u_i \) are the primitive ray generators of the rays in \(\Sigma(1) \). This follows from the observation that
\[
A \left[-\sum_{i=1}^k u_i^\top \right] = 0. \quad \triangle
\]

By Theorem 3.5, under the assumption that \(P_{i; i}'' \) has rank \(k - n \), we have that the degree of \(X_{\mathcal{A}_i} \) is \((k - n)/q_{\mathcal{A}_i} \text{Vol}(\Delta_{\mathcal{A}_i}) \), where \(\Delta_{\mathcal{A}_i} = \text{conv}\{0\} \cup \{P_n'': i \in \mathcal{A}_i\} \subset \mathbb{R}^{k-n} \) and \(q_{\mathcal{A}_i} \) is the lattice index of \(\text{im} P_{i; i}'' \) in \(\mathbb{Z}^{k-n} \). We call the polytope \(\Delta_{\mathcal{A}_i} \) the orbit polytope corresponding to \(\mathcal{A}_i \).

Proposition 3.6. Let \(\mathcal{I} \subset \{1, \ldots, k\} \) be a subset of indices such that \(z_{\mathcal{I}} = \sum_{i \in \mathcal{I}} e_i \in \pi^{-1}(U) \), with \(U \) as in Theorem 2.1. For all \(z \) in the \((\mathbb{C}^*)^k\)-orbit \((\mathbb{C}^*)^{\mathcal{I}} \subset \mathbb{C}^k \setminus \mathbb{Z} \), we have
\[
\text{deg } G \cdot z = \frac{s_{\mathcal{I}}}{q_{\mathcal{I}}}(k - n)! \text{Vol}(\Delta_{\mathcal{I}}),
\]
where \(q_{\mathcal{I}}, \Delta_{\mathcal{I}} \) are the lattice index and orbit polytope as above, \(s_{\mathcal{I}} \) is the product of the invariant factors of \(\ker P_{i; i}'' \), and \(\text{Vol}() \) denotes the Euclidean volume. In particular, \(G \cdot z \) is a union of \(s_{\mathcal{I}} \) irreducible projective varieties of degree \(\text{deg}(G \cdot z)/s_{\mathcal{I}} \), each of which is equal to the projective toric variety \(X_{\mathcal{A}_i} \subset (\mathbb{C}^*)^{\mathcal{I}} \subset \mathbb{P}^k \) up to an invertible diagonal scaling.

Proof. By Corollary 3.3, it suffices to show the proposition for \(z = z_{\mathcal{I}} \). From (10), we see that \(G \cdot z_{\mathcal{I}} \) is a union of varieties obtained by scaling \(X_{\mathcal{A}_i} \). The dense torus of \(X_{\mathcal{A}_i} \), denoted by \(T_{P''} \), is the projection of \(T_{P''} \) onto \((\mathbb{C}^*)^n \). The toric variety \(X_{\mathcal{A}_i} \) has dimension \(k - n \) by Lemma 3.4 and degree \((k - n)!/q_{\mathcal{I}} \text{Vol}(\Delta_{\mathcal{I}}) \) by Theorem 3.5. By taking the dual of (9), we see that \(G \cdot z_{\mathcal{I}} \) is isomorphic to the quasitorus
\[
\text{Hom}_{\mathbb{Z}}\left(\sum_{i \in \mathcal{I}} \mathbb{Z} \cdot D_i \over \ker P_{\mathcal{I}}, (\mathbb{C}^*)^n \right),
\]
which is a direct sum of a finite group of order \(s_{\mathcal{I}} \) and the torus \(T_{P''} \).

Remark 3.7. Note that when \(\mathcal{I} = \{1, \ldots, k\} \), \(\ker P_{\mathcal{I}} = \ker P = \text{im } F^\top \), such that the invariant factors of \(\ker P \) are \(s_1, \ldots, s_n \) and \(s = s_{\mathcal{I}} = \prod_{i=1}^n s_i \). Moreover, the lattice map \(P'' = P_{i; i}'' \) is surjective, such that \(q_{\mathcal{I}} = 1 \).

Corollary 3.8. If \(\text{Cl}(X) \simeq \mathbb{Z}^{k-n} \) is free, then for \(\mathcal{I} \) as in 3.6, the degree of \(G \cdot z \subset \mathbb{P}^k \) is \(\text{deg } G \cdot z = \text{Vol}(\Delta_{\mathcal{I}}) \) for all \(z \) in the \((\mathbb{C}^*)^k\)-orbit \((\mathbb{C}^*)^{\mathcal{I}} \). Moreover, \(G \cdot z \subset \mathbb{P}^k \) is \((n \text{ irreducible}) \) toric variety.

Proposition 3.6 provides a direct way of computing \(\text{deg}(G \cdot z) \) for any \(z \in \pi^{-1}(U) \). We implemented this in Macaulay2 \([20] \). The code is available at \url{https://mathrepo.mis.mpg.de/CoxHomotopies/index.html}. The following two examples illustrate applications of Proposition 3.6.
Example 3.3. The double pillow is the toric variety $X = X_{\mathcal{A}} \subset \mathbb{P}^4$ where \mathcal{A} consists of the columns of $A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & -1 \end{bmatrix}$ [40, Subsection 3.3]. The fan corresponding to the double pillow has facet matrix $F = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}$ with Smith normal form

$$F^\top \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

This shows that the class group has torsion: $\text{Cl}(X) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}^2$ via

$$[\sum_{i=1}^4 a_i D_i] \mapsto (a_2 - a_1 + 2\mathbb{Z}, a_2 + a_4, a_1 + a_3).$$

The reductive group G is isomorphic to $\{ -1, 1 \} \oplus (\mathbb{C}^*)^2$ via $(w, \lambda_1, \lambda_2) \mapsto (w^{-1} \lambda_2, w \lambda_1, \lambda_2, \lambda_1)$. The closure is a union of two planes in \mathbb{P}^4, and every orbit closure $G \cdot z$ for $z \in (\mathbb{C}^*)^k$ is equal to \overline{G} up to a diagonal change of coordinates. Therefore, these orbits have degree 2. The orbit polytope $\Delta_{\mathcal{A}}$ is the standard simplex in \mathbb{R}^2.

Example 3.4. Consider again the Hirzebruch surface \mathcal{H}_2 from Example 2.3. The Smith normal form of the facet matrix F^\top is given by

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix} F^\top \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \text{ hence } P'' = \begin{bmatrix} -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{bmatrix}.$$

The class group $\text{Cl}(\mathcal{H}_2)$ is free, $G \cong (\mathbb{C}^*)^2$ and the orbit of $z = (z_1, \ldots, z_4) \in \mathbb{C}^4 \setminus \mathbb{Z}$ is parametrized by

$$G \cdot z = \{(z_1 \lambda_1^{-1}, z_2 \lambda_2^2 \lambda_1^{-1}, z_3 \lambda_3^{-1}, z_4 \lambda_4^{-1}) \mid (\lambda_1, \lambda_2) \in (\mathbb{C}^*)^2\}. $$

The orbit polytopes are shown in Figure 4. By Corollary 3.8, if $z \in (\mathbb{C}^*)^3$, $\overline{G} \cdot z$ has degree $\text{Vol}(\Delta_{\mathcal{A}}) = 3$. If $z \in (\mathbb{C}^*)^{1,3,4} \cup (\mathbb{C}^*)^{1,2,3}$, the degree drops to $\text{Vol}(\Delta_{\mathcal{A}}) = \text{Vol}(\Delta_{\mathcal{A}}^{1,2,3}) = 1$.

Figure 4. Orbit polytopes from Example 3.4.
4. Cox homotopies: coefficient-parameter theory and algorithms

Tim: Come back to this later.

As in the previous section, $X = X_\Sigma$ is an n-dimensional toric variety such that $\pi : \mathbb{C}^k \setminus Z \to X$ is an almost geometric quotient which is constant over G-orbits on $\mathbb{C}^k \setminus Z$, and such that $U \subset X$, $\pi^{-1}(U) : \pi^{-1}(U) \to U$ is geometric on the dense open subset $U \subset X$.

This section describes our homotopy algorithm for solving polynomial systems on X by tracking points in the total coordinate space \mathbb{C}^k. The start system may be any system satisfying the conditions of Theorem 2.3, and whose solutions lie in $\pi^{-1}(U)$: The start Bernstein-generic system whose solutions For systems with solutions in \mathbb{C}

For homotopies between generic systems $p \in U$, we will slice the G-orbit $\pi^{-1}(p)$ with a general linear space of dimension n to get Tim: finitely many representatives for $\pi^{-1}(p)$. Theorem 4.1 establishes that the orbits in our homotopy remain disjoint. Thus, we may track only one representative per orbit when the target system is generic in the sense of Theorem 2.3. In Section 4.2, we consider the case of a non-generic target system. This presents a subtlety not encountered in the multihomogeneous case—namely, some paths in the total space \mathbb{C}^k may either diverge or converge to a point in the base locus (see Example 4.1). We propose an endgame in Section 4.2 for finding a path whose endpoint represents a point in X.

4.1. Coefficient-parameter homotopy in the dense torus. As our homotopy is akin to a coefficient-parameter homotopy, we consider the family of all systems with fixed supports $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ in M (cf. Subsection 2.3). Thus, we consider $\hat{h}_i(t; c) = \sum_{m \in \mathcal{A}_i} c_{i,m} t^m$, $i = 1, \ldots, n$, where the parametric coefficients $c_{i,m}$ may vary. We denote the affine space of parameters by $\mathbb{C}^\mathcal{A}$. We assume hereafter that the Minkowski sum $\mathcal{P} = \mathcal{P}_1 + \cdots + \mathcal{P}_n$, where $\mathcal{P}_i = \text{conv}(\mathcal{A}_i)$, has full dimension n, so that the BKK number $\delta = \text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ from Theorem 2.3 is positive.

The homotopy considered in our main algorithm (Algorithm 2) is given by

\[(12) \quad (\mathcal{H}(x; \tau), \mathcal{L}(x)) = 0,\]

where $\mathcal{L}(x) = Ax + b$ determines an (affine) linear space $L = \mathcal{L}^{-1}(0) = \{x \in \mathbb{C}^k \mid \mathcal{L}(x) = 0\}$, the path $\phi : [0, 1] \to \mathbb{C}^\mathcal{A}$ is assumed to be smooth, and \mathcal{H} is obtained by homogenizing

\[(13) \quad \hat{\mathcal{H}}(t; \phi(\tau)) = \left(\hat{h}_1(t; \phi(\tau)), \ldots, \hat{h}_n(t; \phi(\tau)) \right) = 0.\]

We also need that ϕ, A, and b satisfy certain genericity conditions as outlined in Theorem 4.1. We will refer to such homotopies as Cox homotopies.

Theorem 4.1 gives the basis for Algorithm 2. To prove this theorem, it is natural to consider the incidence variety defined for fixed L by

\[(14) \quad \hat{\mathcal{V}}_{\mathcal{A} \setminus L} = \{(x, c) \in (\mathbb{C}^k \setminus Z) \cap L) \times \mathbb{C}^\mathcal{A} \mid \mathcal{H}(x; c) = 0\}.\]

Solution paths for the Cox homotopy in Equation (12) correspond to lifts of the parameter path ϕ to the variety $\hat{\mathcal{V}}_{\mathcal{A} \setminus L}$. For generic ϕ, A, and b, Theorem 4.1 implies that there are exactly $d\delta$ such paths, where d denotes the degree of the G-orbit closure $\overline{G \cdot (1, 1, \ldots, 1)}$ and $\delta = \text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$. Note that d may be computed using Remark 3.7.
Theorem 4.1. There exist Zariski open subsets $U_{\mathcal{A}} \subset \mathbb{C}^{\mathcal{A}}$ and $U_{\mathcal{A},b} \subset \mathbb{C}^{(k-n) \times k} \times \mathbb{C}^{k-n}$ such that for all $c^* \in U_{\mathcal{A}}$ and all $(A,b) \in U_{\mathcal{A},b}$, with $L(x) = Ax + b$, we have

1. $V_{T}(\hat{\mathcal{H}}(t;c^*)) = \{\zeta_1, \ldots, \zeta_d\}$ consists of δ points,
2. $V_{C}(H(x;c^*),L(x)) = \{z_{ij} \mid i = 1, \ldots, \delta, j = 1, \ldots, d\}$ consists of $d\delta$ points,
3. for some labeling of these points, $\pi(z_{ij}) = \zeta_i$ for all i,j.

For fixed $(A,b) \in U_{\mathcal{A},b}$ and a smooth function $\phi : [0,1] \to U_{\mathcal{A}}$, we have that $\pi \circ z_{ij} = \zeta_i$ for all i,j.

Proof. The variety $V_{C}(H(x;c^*))$ is a union of G-orbits, which have dimension $k-n$ by Lemma 3.4. We take $U_{\mathcal{A},b}$ such that $G \cdot (e_1 + \cdots + e_k) \cap L$ always consists of d points for $L = L^{-1}(0)$. Theorem 2.3, together with Remark 3.7, implies that the coordinate projection $\pi_{\mathcal{A}} : \mathcal{V}_{\mathcal{A},b} \to \mathcal{C}^{\mathcal{A}}$ is a dominant map with generically finite fibers. More precisely, $\pi_{\mathcal{A}}$ is a branched cover of degree $d\delta$, meaning that the fiber $\pi_{\mathcal{A}}^{-1}(c)$ consists of $d\delta$ points for all $c \in U_{\mathcal{A}}$, where $\mathcal{C}^{\mathcal{A}} \setminus U_{\mathcal{A}}$ denotes the branch locus of $\pi_{\mathcal{A}}$. The set $U_{\mathcal{A}}$ is Zariski open by [38, Theorem 2.29]. We also observe that $\pi_{\mathcal{A}}$ has a factorization induced by π. That is, we may write $\pi_{\mathcal{A}} = \pi_{1\mathcal{A}} \circ \pi_{2\mathcal{A}}$, where $\pi_{1\mathcal{A}}$ and $\pi_{2\mathcal{A}}$ are branched covers of degree d, δ, respectively. So far we have shown (1)–(3). Now, whenever $(z,c) \in \pi_{1\mathcal{A}}^{-1}(c)$ and $c \in U_{\mathcal{A}}$, the derivative $D_{z,c} \pi_{\mathcal{A}}$ is an invertible linear map by [38, Theorems 2.30]. This gives (5). Similarly, (4) follows for $\zeta = \pi(z)$ by considering $D_{z,c} \pi_{\mathcal{A}}$ and applying the chain rule. For (6), we simply note that $(A,b) \in U_{\mathcal{A},b}$ implies there are exactly d paths z_{1i}, \ldots, z_{id} for each ζ_i satisfying $\zeta_i = \pi \circ z_{ij}$.

Remark 4.2. It is possible to allow the linear space L to change as τ moves from 1 to 0. In other words, we could consider a Cox homotopy given by $(H(x;\tau), L_{\tau}(x)) = 0$ where $L(\tau) = L_{\tau}^{-1}(0)$ is a sufficiently generic, continuous path in the Grassmannian $G(n,k)$. In Subsection 4.4 we will exploit this observation to propose the strategy of orthogonal slicing for Cox homotopies.

Remark 4.3. Since the complement of $U_{\mathcal{A}}$ is of complex codimension at least 1 in $\mathcal{C}^{\mathcal{A}}$, the image of a general 1-real-dimensional parameter path $\phi : [0,1] \to \mathcal{C}^{\mathcal{A}}$ with $c_0 = \phi(0) \in U_{\mathcal{A}}$, $c_1 = \phi(1) \in U_{\mathcal{A}}$ is contained in $U_{\mathcal{A}}$. A standard trick for obtaining such a general path is by setting $\phi(\tau) = (1 - \tau)c_0 + \tau c_1$, where $\gamma \in \mathbb{C}$ is a random constant. This is known as the gamma trick, see for instance [39, Lemma 7.1.3]. In this case, the Cox homotopy (H, L) is given by $H(x;\tau) = (1 - \tau)\mathcal{G} + \tau \mathcal{F}$, where $\mathcal{F}(x) = H(x;0)$ and $\mathcal{G}(x) = H(x;1)$. If the start system (\mathcal{G}, L) is suitably generic, we can set $\gamma = 1$. Homotopies obtained in this way are often called straight line homotopies [5, Sec 2.1].

An important consequence of Theorem 4.1 is that for parameter paths $\phi : [0,1] \to U_{\mathcal{A}}$, it is sufficient to track only $\delta = \text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ paths in the Cox homotopy (H, L) to track the paths defined by $H(x;\tau)$ on X. Indeed, for $i = 1, \ldots, \delta$, it suffices to track only one of the paths $z_{ij}(\tau), j = 1, \ldots, d$ for τ going from 1 to 0, since all of these will land on a representative of the same G-orbit when $\tau = 0$.

4.2. Degenerating orbits and a specialized endgame. For a set $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ of supports, we fix a smooth parameter path $\phi : [0,1] \to \mathcal{C}^{\mathcal{A}}$ and consider the corresponding homotopy $\hat{\mathcal{H}}(t;\tau)$. We denote $\hat{\mathcal{F}}(t) = \hat{\mathcal{H}}(t;0)$, $\hat{\mathcal{G}}(t) = \hat{\mathcal{H}}(t;1)$ and $\mathcal{F}, \mathcal{G}, \mathcal{H}$ for the associated
homogeneous counterparts. We assume that $\hat{\mathcal{G}}$ defines $\delta = \text{MV}(\mathcal{P}_1, \ldots, \mathcal{P}_n)$ isolated solutions in $T \subset X$, but $\hat{\mathcal{F}}$ does not. That is, $|V_T(\hat{\mathcal{F}})| < \delta$.

In this setup, if ϕ is suitably generic, Theorem 4.1 tells us that $\hat{\mathcal{H}}(t; \tau)$, $\tau \in (0, 1]$ defines δ disjoint paths $\tau \mapsto \zeta_i(\tau), i = 1, \ldots, \delta$ in the dense torus T. In this section we investigate what happens for $\tau \to 0$. Since $|V_T(\hat{\mathcal{F}})| < \delta$ by assumption, at least one of these paths, say $\zeta_i(\tau)$, moves out of the torus T for $\tau \to 0$. By compactness of $X \supset T$, the endpoint $\lim_{\tau \to 0^+} \zeta_i(\tau)$ exists in X and it satisfies

$$\zeta_i(0) = \lim_{\tau \to 0^+} \zeta_i(\tau) \in X \setminus T.$$

We assume that $\zeta_i(0) \in U$ is an isolated point of $V_X(\mathcal{F})$, where U is as in Theorem 2.1. We first show that in an analytic neighborhood $U \subset \mathbb{C}$ of $\tau = 0$, the G-orbit $\pi^{-1}(\zeta_i(0))$ has a representative $r(\tau) = (r_1(\tau), \ldots, r_k(\tau))$ given by Puiseux series. We use the notation $\mathbb{C}[[\tau]]$ for the power series ring, $\mathbb{C}\{\tau\}$ for the field of Puiseux series, and $\text{val} : \mathbb{C}\{\tau\} \to \mathbb{Q}$ for its standard valuation. As in Section 3, we let $(\mathbb{C}^*)^\mathcal{I}$ be the $(\mathbb{C}^*)^k$-orbit $\{z \in \mathbb{C}^k \setminus \mathbb{Z} \mid z_i \neq 0, \text{ for all } i \in \mathcal{I} \}$ and work with index sets \mathcal{I} such that $(\mathbb{C}^*)^\mathcal{I} \subset \pi^{-1}(U)$.

Lemma 4.4. Let $\tau \mapsto \zeta_i(\tau)$ be a solution path of $\hat{\mathcal{H}}(t; \tau)$ such that $\zeta_i(0) \in U$ is an isolated point in $V_X(\mathcal{F})$, where U is as in Theorem 2.1. In a neighborhood $U \subset \mathbb{C}$ of $\tau = 0$, there is an algebraic function $r : U \to \mathbb{C}^k \setminus \mathbb{Z}$, $r \in \mathbb{C}\{\tau\}^k$ such that $\pi^{-1}(\zeta_i(\tau)) = G \cdot r(\tau)$ for all $\tau \in U$. Moreover, if \mathcal{I} is such that $\zeta_i(0) \in \pi((\mathbb{C}^*)^\mathcal{I})$, the valuations of $r(\tau) = (r_1(\tau), \ldots, r_k(\tau))$ satisfy

$$\text{val}(r_i(\tau)) > 0, \ i \notin \mathcal{I} \quad \text{and} \quad \text{val}(r_i(\tau)) = 0, \ i \in \mathcal{I}.$$

Proof. Since $\zeta_i(0) \in U \subset X$, $\pi^{-1}(\zeta_i(0))$ has dimension $k - n$ (Lemma 3.4) and for almost all choices of the linear space $L = \mathcal{L}^{-1}(0), \ L \cap \pi^{-1}(\zeta_i(0))$ consists of isolated points. For such a fixed choice of L, pick a point $r_0 \in L \cap \pi^{-1}(\zeta_i(0)) \subset V_{\mathbb{C}^k \setminus \mathbb{Z}}(\mathcal{F}, \mathcal{L})$. Since $\zeta_i(0)$ is an isolated point in $V_X(\mathcal{F})$, r_0 is an isolated solution of $(\mathcal{F}(x), \mathcal{L}(x)) = (\mathcal{H}(x; 0), \mathcal{L}(x))$ in $\mathbb{C}^k \setminus \mathbb{Z}$ and there is an open neighborhood U of $\tau = 0$ and an algebraic function $r : U \to \mathbb{C}^k \setminus \mathbb{Z}$ satisfying $r(0) = r_0$ and $(\mathcal{H}(r(\tau); \tau), \mathcal{L}(r(\tau))) = 0$. The statement about the valuations follows immediately from $r(0) \in \pi^{-1}(\zeta_i(0)) \subset (\mathbb{C}^*)^\mathcal{I}$.

Remark 4.5. By reparametrizing, e.g. by setting $\tau \leftarrow \tau_m$ for a positive integer m, we may assume that $r(\tau)$ in Lemma 4.4 is given by a power series.

Take $\tau^* \in U$ where U is as in Lemma 4.4 and suppose that $r(0) \in (\mathbb{C}^*)^\mathcal{I}$. Our aim is to formalize the following intuition. A G-orbit $G \cdot r(\tau^*) \subset \mathbb{C}^k \setminus \mathbb{Z} \subset \mathbb{P}^k$ for $r(\tau^*) \in (\mathbb{C}^*)^\mathcal{I}$ hits the general linear space L in d points, where $d = s(k - n)! \text{Vol}(\Delta^{(1 \ldots k)})$ (see Remark 3.7). When we move $r(\tau^*)$ towards $r(0) \in (\mathbb{C}^*)^\mathcal{I}$, the points in $(G \cdot r(\tau^*)) \cap L$ move in L. By Proposition 3.6, as the representative $r(\tau)$ enters $(\mathbb{C}^*)^\mathcal{I}$ the orbit degree might drop, meaning that possibly $|(G \cdot r(\tau^*)) \cap L| > |(G \cdot r(0)) \cap L|$. The ‘missing’ points in $(G \cdot r(0)) \cap L$ may be due to some points traveling into $(L \cap Z)$, some points traveling to infinity out of the total coordinate space, or two different points colliding at $\tau = 0$. We are interested in answering the following question: how many of the points in $(G \cdot r(0)) \cap L$ eventually land in $(G \cdot r(0)) \cap L$? Equivalently, if $r(\tau)$ is a representative for $\pi^{-1}(\zeta_i(\tau))$, how many of the representative paths $z_{ij}(\tau)$ in $\mathbb{C}^k \setminus \mathbb{Z}$ travel to the orbit $G \cdot r(0)$ as $\tau \to 0$?

Theorem 4.6. Let $U \subset \mathbb{C}$ be an open neighborhood of $0 \in \mathbb{C}$ and let $r(\tau) = (r_1(\tau), \ldots, r_k(\tau))$ be a map $U \to \mathbb{C}^k \setminus \mathbb{Z}$ such that $r_i(\tau) \in \mathbb{C}[[\tau]] \subset \mathbb{C}\{\tau\}$. Let \mathcal{I} be such that $r(0) \in (\mathbb{C}^*)^\mathcal{I}$ and
suppose that
\[\text{val}(r_i(\tau)) > 0, \; i \notin \mathcal{I} \quad \text{and} \quad \text{val}(r_i(\tau)) = 0, \; i \in \mathcal{I}. \]
For almost all affine maps \(L(x) = Ax + b, \) there are \(s(k - n)! \text{Vol}(\Delta^{\mathcal{I}}) \) \(k \)-tuples \(z(t) = (z_1(\tau), \ldots, z_k(\tau)) \in \mathbb{C}[\tau]^{k} \) such that
\[\text{val}(z_i(\tau)) > 0, \; i \notin \mathcal{I} \quad \text{and} \quad \text{val}(z_i(\tau)) = 0, \; i \in \mathcal{I} \]
and \(z(\tau) \in G \cdot r(\tau), \; A \cdot z(\tau) + b = 0, \) for \(\tau \) in a neighborhood \(\mathcal{U}' \subset \mathcal{U} \) of \(0 \in \mathbb{C}. \)

Proof. The proof uses some notation from Section 3. In particular, we recall that \(P \) is one of the unimodular matrices in the Smith normal form of the transposed facet matrix \(F^\top \) and \(P' \) contains its last \(k - n \) rows. We first consider the case where \(\text{Cl}(X) \) is torsion free. By Lemma 3.1 it suffices to show that for almost all choices of \(A, b, \) there are \((k - n)! \text{Vol}(\Delta^{\mathcal{I}}) \) \((k - n) \)-tuples \(\lambda(\tau) = (\lambda_1(\tau), \ldots, \lambda_{k-n}(\tau)) \in \mathbb{C}\{\tau\}^{k-n} \) such that \(\text{val}(\lambda_i(\tau)) = 0, i = 1, \ldots, k - n \) and
\[A(r_1(\tau)\lambda(\tau)^{P''_1}, \ldots, r_k(\tau)\lambda(\tau)^{P''_k})^\top + b = 0, \]
or \(\sum_{j=1}^k A_{ij}r_j(\tau)\lambda(\tau)^{P''_j} + b_i = 0, i = 1, \ldots, k - n. \) The solutions \(\lambda(\tau) \) with \(\text{val}(\lambda_i(\tau)) = 0, i = 1, \ldots, k - n \) are given by
\[\lambda(\tau) = (\ell_1, \ldots, \ell_{k-n}) + \text{higher order terms}, \]
where \((\ell_1, \ldots, \ell_{k-n}) \in (\mathbb{C}^*)^{k-n} \) is a solution of
\[\sum_{j \notin \mathcal{I}} A_{ij}r_j(0)\lambda^{P''_j} + b_i = 0, \; i = 1, \ldots, k - n. \]
Indeed, by (15) the terms where \(j \in \mathcal{I} \) correspond to the facet with facet normal \((0, \ldots, 0, 1) \) on the lower hull of the lifted point set \(\{(P''_j, \text{val}(r_j(\tau)))\}_{j=1,\ldots,k} \subset \mathbb{R}^{k-n+1}, \) see e.g. [24, Section 2]. By Theorem 3.5 and the fact that \(r_j(0) \neq 0 \) for all \(j \in \mathcal{I}, \) (16) has \((k - n)! \text{Vol}(\Delta^{\mathcal{I}}) \) solutions for almost all choices of \(A, b. \)

It remains to show that each of these solutions \(\lambda(\tau) \) gives a different \(k \)-tuple
\[z(\tau) = (r_1(\tau)\lambda(\tau)^{P''_1}, \ldots, r_k(\tau)\lambda(\tau)^{P''_k})^\top. \]
. For \(\varepsilon > 0, \) let \(\mathcal{U}_\varepsilon = \{ \tau \in \mathbb{C} \mid |\tau| < \varepsilon \} \) and note that there exists \(\varepsilon > 0 \) such that for any two solutions \(\lambda(\tau) \) and \(\mu(\tau), \lambda(\tau^*) \neq \mu(\tau^*) \) for all \(\tau^* \in \mathcal{U}_\varepsilon \) and \(r_i(t^*) \neq 0 \) for all \(\tau^* \in \mathcal{U}_\varepsilon \setminus \{0\}. \) Since \(P' : \mathbb{Z}^k \to \mathbb{Z}^{k-n} \) is surjective, this implies
\[(r_1(\tau^*)\lambda(\tau^*)^{P''_1}, \ldots, r_k(\tau^*)\lambda(\tau^*)^{P''_k}) \neq (r_1(\tau^*)\mu(\tau^*)^{P''_1}, \ldots, r_k(\tau^*)\mu(\tau^*)^{P''_k}), \; \text{for} \; \tau^* \in \mathcal{U}_\varepsilon \setminus \{0\}. \]

Using an analogous argument, we see that in the case where \(\text{Cl}(X) \) has torsion, each irreducible component of \(G \cdot r(\tau) \) contributes \((k - n)! \text{Vol}(\Delta^{\mathcal{I}}) \) \(k \)-tuples \(z(\tau). \)

Example 4.1. We continue Example 3.4 by showing how the orbit \(G \cdot z \) ‘degenerates’ from a degree 3 surface to a plane as \(z \) moves into \(D_4. \) We consider the equations defining the closure \(\overline{G \cdot z} \) in \(\mathbb{P}^4. \) It can be seen from (11) that for \(z \in (\mathbb{C}^*)^4, \)
\[\overline{G \cdot z} = V_{\mathbb{P}^4}(z_3x_1 - z_1x_3, \; z_4x_1^2x_2 - z_2^2z_2x_0x_4), \]
where \(x_1, \ldots, x_4 \) are the Cox variables and \(x_0 = 0 \) is the hyperplane ‘at infinity’ in the total coordinate space. If we set \(r(\tau) = (r_1(\tau), r_2(\tau), r_3(\tau), r_4(\tau)) = (z_1, z_2, z_3, \tau), \) the variety \(\overline{G \cdot r(\tau)} \) degenerates to \(V_{\mathbb{P}^4}(z_3x_1 - z_1x_3, \; z_2^2x_0x_4) \) for \(\tau \to 0, \) which is the union of a double plane at infinity and the plane \(\overline{G \cdot (z_1, z_2, z_3, 0)} = V_{\mathbb{P}^4}(z_3x_1 - z_1x_3, x_4). \) This means that if we slice (17) with a
general plane \(L \) and we let \(z_4 \to 0 \), two out of three intersection points drift off to infinity and the other one lands on the orbit \(G \cdot (z_1, z_2, z_3, 0) \).

Applying the same reasoning for \(z_2 \to 0 \), we see that (17) degenerates to \(V_{\mathbb{P}^4}(z_3 x_1 - z_1 x_3, x_1^2 x_2) \), which is the union of the plane \(V_{\mathbb{P}^4}(x_1, x_3) \) with multiplicity 2 and the plane \(G \cdot (z_1, 0, z_3, z_4) = V_{\mathbb{P}^4}(z_3 x_1 - z_1 x_3, x_2) \). Note that the intersection of the first component \(V_{\mathbb{P}^4}(x_1, x_3) \) with \(\mathbb{C}^4 \) is a component of the base locus \(Z \subset \mathbb{C}^4 \). This means that if we slice (17) with a general plane \(L \) and we let \(z_2 \to 0 \), two out of three intersection points move towards the base locus and only one of them lands on the orbit \(G \cdot (z_1, 0, z_3, z_4) \).

Combining Lemma 4.4, Remark 4.5 and Theorem 4.6, we see that if \(\zeta_i(0) \in \pi((\mathbb{C}^*)^d) \), then a fraction of \(\operatorname{Vol}(\Delta^{(\tau)})/\operatorname{Vol}(\Delta^{(0)}(1,\ldots,k)) \) of the representatives \(z_{ij}(\tau) \) of \(\zeta_i(\tau) \) will travel to \(\pi^{-1}(\zeta_i(0)) \) as \(\tau \to 0 \). This means that, although for the purpose of tracking paths in \(T \subset X \) it suffices to track only one representative, at the very end of the tracking process we may have to switch representatives in order to find homogeneous coordinates of \(\zeta_i(0) \). We propose to track only one representative per path in \(X \) for \(\tau \in [\tau^*, 1] \), where \(\tau^* \) is ‘close’ to 0, e. g. \(\tau^* = 0.1 \). At \(\tau = \tau^* \), we initialize a specialized endgame which tries to finish the path by switching representatives at \(\tau = \tau^* \) until we land on a point in \(\pi^{-1}(\zeta_i(0)) \). We make this procedure explicit in Algorithm 1.

Algorithm 1 A specialized endgame for Cox homotopies

1: procedure \textsc{EndGame}\((\mathcal{H}, \mathcal{L}), 0 < \tau^* \leq 1, z \in V_{(\mathbb{C}^*)^k}(\mathcal{H}(x; \tau^*)) \cap L)\)
2: \textbf{found} \leftarrow \text{false}
3: \textbf{while} \text{ found == false} \textbf{do}
4: \hspace{1em} obtain \(z_{\text{target}} \) by tracking \((\mathcal{H}, \mathcal{L}) \) for \(\tau \in [0, \tau^*] \) with starting solution \(z \)
5: \hspace{1em} \textbf{if} \(z_{\text{target}} < \infty \) and \(z_{\text{target}} \notin \mathcal{Z} \) \textbf{then}
6: \hspace{2em} \text{found} \leftarrow \text{true}
7: \hspace{1em} \textbf{else}
8: \hspace{2em} \(z \leftarrow \textsc{SwitchRepresentative}(z) \)
9: \hspace{1em} \textbf{end if}
10: \textbf{end while}
11: \textbf{return} \(z_{\text{target}} \) \hspace{1em} \triangleright \text{A set of Cox coordinates for } \lim_{\tau \to 0^+} \zeta_i(\tau) \in V_X(\mathcal{F})
12: \textbf{end procedure}

A few comments are in order to clarify Algorithm 1. First of all, note that Theorem 4.6 guarantees that the endgame terminates and that the output \(z_{\text{target}} \) is such that \(\pi(z_{\text{target}}) = \zeta_i(0) \) if \(z = z_{ij}(\tau^*) \) for some \(j \). In line 4 we assume that the output of the tracking algorithm is \(\infty \) in case the path diverges, and to check whether \(z_{\text{target}} \in \mathcal{Z} \) one can see if the residual with respect to the monomial generators of the irrelevant ideal \(B \) is adequately small (using some sensible heuristic). In line 8, the routine \textsc{SwitchRepresentative} finds another representative \(z' \) of \(G \cdot z \) satisfying \(\mathcal{L}(z') = 0 \). In our implementation, we may either enumerate representatives all at once, or dynamically by tracking monodromy loops on

\[
\mathcal{L}(z_1^\nu_{1,1}, \ldots, z_k^\nu_{k,1}) = \left(\sum_{j=1}^k A_{ij} z_j^\nu_{i,j} + b_i \right)_{i=1,\ldots,k-n} = 0
\]
with seed $\lambda_0 = (1, \ldots, 1)$ and setting $z' = (z_1^{\lambda_0^{P_{1i}}}, \ldots, z_k^{\lambda_0^{P_{ki}}})$ for any solution $\lambda \neq \lambda_0$. In practice one should check that z' is a representative that has not been used before. In principal, though less straightforward to implement, the polyhedral homotopy could also be used in such an incremental strategy (cf. [34]). Still, monodromy may be preferable if computing mixed cells is a bottleneck. We refer to [16] for more details on monodromy and efficiency considerations.

Remark 4.7. In the case of (multi)projective homotopies, $\text{Vol}(\Delta^\mathcal{F}) = 1/(k-n)!$ and $s_{\mathcal{F}} = 1$ are constant for all \mathcal{F}, meaning that in this case all representative paths will land on $\pi^{-1}(\zeta_i(0))$ for $\tau \to 0$.

4.3. Solving equations on X

Let $\hat{f}_1, \ldots, \hat{f}_n \in \mathbb{C}[M]$ and let $\mathcal{A} = (\mathcal{A}_1, \ldots, \mathcal{A}_n)$ be the corresponding supports ($\mathcal{A}_i \subset M$). In this subsection, we describe an algorithm for computing the solutions defined by $\hat{F} = (\hat{f}_1, \ldots, \hat{f}_n) = 0$ on X, where $X = X_{\mathcal{F}}$ is the n-dimensional toric variety coming from \mathcal{A} as in Subsection 2.3. That is, the algorithm computes all isolated points of $V_X(\mathcal{F})$, where \mathcal{F} is obtained from \hat{F} by homogenizing. Here, ‘computing’ a point $\zeta \in X$ means computing numerical approximations of a set of Cox coordinates of ζ in $\mathbb{C}^k \setminus Z$. We assume that we are given a system of affine start equations $\hat{G} = (\hat{g}_1, \ldots, \hat{g}_n)$ such that \hat{g}_i has support \mathcal{A}_i and $|V_T(\hat{G})|$ consists of the BKK number δ many starting solutions $\{\zeta_i(1)\}_{i=1, \ldots, \delta}$, which are also given. As per usual, we denote G for the homogenized start system. For a generic linear space $L = L^{-1}(0)$ of $\mathbb{C}^k \setminus Z$, we consider the Cox homotopy (H, L) where $H(x; \tau) = (1 - \tau)G + \gamma \tau F$ and $\gamma \in \mathbb{C}$ is either a random complex constant or $\gamma = 1$ when G is sufficiently generic. Using insights from the previous sections, Algorithm 2 is now immediate. In line 5 of this algorithm, the given starting solutions $\{\zeta_1(1), \ldots, \zeta_\delta(1)\}$ are lifted to the points $\{z_1(1), \ldots, z_\delta(1)\}$ in the total coordinate space in such a way that $\pi(z_i(1)) = \zeta_i(1)$ and $L(z_i(1)) = 0, i = 1, \ldots, \delta$. This is done using Algorithm 3, which we discuss below. In line 6 of Algorithm 2, the homogenized starting solutions are tracked for τ going from 1 to τ_{EG}, which is a parameter indicating where the endgame operating region $\tau \in [0, \tau_{EG})$ starts. We propose $\tau_{EG} = 0.1$ as a default value. The tracking can happen in only n instead of k variables, by setting $x = \hat{x} + Ky$, where $\hat{x} \in \mathbb{C}^k$ is any point in L and K is a matrix whose columns span ker A, where A is the matrix from line 4. Line 8 uses Algorithm 1.

Algorithm 2 solve $\hat{F} = 0$ on X

1: **procedure** SolveViaCoxHomotopy($\hat{F}, \hat{G}, \{\zeta_1(1), \ldots, \zeta_\delta(1)\}, \tau_{EG}$)
2: \quad $\mathcal{F}, \mathcal{G} \leftarrow \text{homogenize } \hat{F}, \hat{G}$
3: \quad $\mathcal{H} \leftarrow (1 - \tau)\hat{G} + \gamma \tau F$
4: \quad $\mathcal{L} \leftarrow \text{random affine map } Ax + b$
5: \quad $\{z_1(1), \ldots, z_\delta(1)\} \leftarrow \text{HomogenizeStartingsolutions}(\{\zeta_1(1), \ldots, \zeta_\delta(1)\}, \mathcal{G}, \mathcal{L})$
6: \quad $\{z_1(\tau_{EG}), \ldots, z_\delta(\tau_{EG})\} \leftarrow \text{track } \{z_1(1), \ldots, z_\delta(1)\}$ along $(\mathcal{H}, \mathcal{L})$ for $\tau \in [\tau_{EG}, 1)$
7: \quad **for** $i = 1, \ldots, \delta$ **do**
8: \quad \quad $z_{i, \text{target}} \leftarrow \text{EndGame}(\mathcal{H}, \mathcal{L}, \tau_{EG}, z_i(\tau_{EG}))$
9: \quad **end for**
10: **return** $\{z_{1, \text{target}}, \ldots, z_{\delta, \text{target}}\}$ \hspace{1em} \triangleright A set of Cox coordinates for each point in $V_X(\mathcal{F})$
11: **end procedure**
We now discuss what happens in line 5 in more detail. First, a set of points \(\tilde{z}_i \in (\mathbb{C}^*)^k \) satisfying \(\pi(\tilde{z}_i(1)) = \zeta_i(1) \) is computed. Since \(\zeta_i(1) = (t_{i1}, \ldots, t_{in}) \in T = (\mathbb{C}^*)^n, i = 1, \ldots, \delta \), we must have \(\tilde{z}_i(1)^{F_j} = t_{ij}, j = 1, \ldots, n \) by (2). Writing \((v_{i1}, \ldots, v_{ik}) \) for the (unknown) coordinates of \(\tilde{z}_i(1) \) on \((\mathbb{C}^*)^k \), we get the system of binomial equations

\[
 v_{i1}^{F_j,1} v_{i2}^{F_j,2} \cdots v_{ik}^{F_j,k} = t_{ij}, \quad i = 1, \ldots, \delta, \quad j = 1, \ldots, \delta.
\]

Taking \(\log(\cdot) \) on both sides (using any choice of branch) gives

\[
 F v_{\log} = t_{\log},
\]

where \(F \) is the facet matrix, \((v_{\log})_{ij} = \log v_{ji} \) and \((t_{\log})_{ij} = \log t_{ji} \). It is clear that a solution \(v_{\log} \) of the linear equations (19) gives a solution \(v_{\log} \) and \(t_{\log} \) are invertible submatrices of \(\tilde{F} \), consisting of the ray generators indexed by \(\{ i_1, \ldots, i_n \} \). Such a matrix \(\tilde{F} \) exists, since \(\Sigma \) is complete. A solution to (19) is given by

\[
 (v_{\log})_{\{ i_1, \ldots, i_n \}} = \tilde{F}^{-1} t_{\log}, \quad (v_{\log})_{\{ 1, \ldots, k \} \{ i_1, \ldots, i_n \}} = 0.
\]

In order to reduce rounding errors in the computation of \(\tilde{F}^{-1} t_{\log} \), it is favorable to pick a well-conditioned submatrix \(\tilde{F} \). This can be done, for instance, using a strong rank-revealing QR factorization [21]. The obtained solutions \(\tilde{z}_i \) satisfy \(\pi(\tilde{z}_i(1)) = \zeta_i(1) \), and hence \(\mathcal{G}(\tilde{z}_i(1)) = 0 \). It remains to track the \(\tilde{z}_i(1) \) through the \(\mathcal{G} \)-orbit \(\pi^{-1}(\zeta_i(1)) \) to obtain \(z_i(1) \) satisfying both \(\mathcal{G}(z_i(1)) = 0 \) and \(\mathcal{L}(z_i(1)) = 0 \). For that, note that the points \(\tilde{z}_i(1) \) satisfy the (very non-generic) linear conditions \(\tilde{z}_i(1) \in L_1^{-1}(0) \), where \(L_1(x) = (x_{i1} - 1)_{i \in \{ 1, \ldots, k \} \{ i_1, \ldots, i_n \}} \). Therefore, we can track the homotopy \((\mathcal{G}, \gamma \tau L_1 + (1 - \tau) \mathcal{L}) \) which intersects \(V_{\mathbb{C}^n \setminus Z}(\mathcal{G}) \) with a moving linear space for \(\tau \) going from 1 to 0, with starting solutions \(\tilde{z}_i(1) \). Homotopies with a moving linear space are fundamental in numerical algebraic geometry, particularly in homotopy membership testing and monodromy [39, §15.4]. We summarize this discussion in Algorithm 3.

Algorithm 3 Lift a set of affine starting solutions in \(T \) to \((\mathbb{C}^*)^k \)

1: **procedure** HomogenizeStartingSolutions(\(\{ \zeta_1(1), \ldots, \zeta_\delta(1) \}, \mathcal{G}, \mathcal{L} \))
2: \{ \(i_1, \ldots, i_n \} \leftarrow \) a subset of indices in \(\{ 1, \ldots, k \} \) such that \(\tilde{F} = F_{\{ i_1, \ldots, i_n \}} \) is invertible
3: \{ \(\tilde{z}_1(1), \ldots, \tilde{z}_\delta(1) \} \leftarrow \) a solution of (18) obtained via (19)
4: \(L_1(x) \leftarrow (x_{i_1} - 1)_{i \in \{ 1, \ldots, k \} \{ i_1, \ldots, i_n \}} \)
5: \(\mathcal{L}(x; \tau) \leftarrow \gamma \tau L_1(x) + (1 - \tau) \mathcal{L}(x) \)
6: \{ \(z_1(1), \ldots, z_\delta(1) \} \leftarrow \) track \{ \(\tilde{z}_1(1), \ldots, \tilde{z}_\delta(1) \} \) along \((\mathcal{G}, \mathcal{L}(x; \tau)) \) for \(\tau \in [0, 1] \)
7: **return** \{ \(z_1(1), \ldots, z_\delta(1) \) \} \(\triangleright \) A set of points in \(V_{\mathbb{C}^n \setminus Z}(\mathcal{G}, \mathcal{L}) \)
8: **end procedure**

4.4. **Orthogonal slicing in \(\mathbb{C}^k \setminus Z \).** In the case where \(X = \mathbb{P}^n \), the linear part \(\mathcal{L} \) of the Cox homotopy \((\mathcal{H}, \mathcal{L}) \) is a single linear equation in the \(x \)-variables \((k = n + 1 \) and the orbits have dimension 1). As pointed out in Remark 4.2, we may let \(\mathcal{L}(x; \tau) \) depend on the continuation parameter \(\tau \). The points in \(\mathbb{C}^{n+1} \setminus \{ 0 \} \) satisfying \(\mathcal{L}(x; \tau) = 0 \) for \(\tau \in (0, 1] \) lie on a moving hyperplane. This can be thought of as a continuously varying affine patch in which the homotopy is being tracked. In [23], the authors propose several adaptive strategies for choosing this patch. One natural choice they propose is that of an orthogonal patch (see [23, Subsection 3.2]). In this subsection, we discuss how this can be done quite naturally in the total coordinate...
space of any compact toric variety \(X\).
Let \(z \in (\mathbb{C}^*)^k\) and consider the corresponding orbit \(G \cdot z\). Locally (and if \(\text{Cl}(X)\) is free, even globally), this orbit is parametrized by

\[
(\lambda^{P''} z_1, \ldots, \lambda^{P''} z_k), \quad \lambda \in \mathbb{C}^{k-n},
\]

where \(P''\) comes from the Smith normal form of \(P^\tau\), see Lemma 3.1. The tangent space to the orbit at \((\lambda^{P''} z_1, \ldots, \lambda^{P''} z_k)\) is parametrized by

\[
z + \sum_{i=1}^{n-k} c_i \frac{\partial}{\partial \lambda_i} (\lambda^{P''} z_1, \ldots, \lambda^{P''} z_k), \quad c_i \in \mathbb{C},
\]

where we view \(z\) as a row vector of length \(k\). For \(\lambda = (1, \ldots, 1)\), we find that the tangent space to the orbit at \(z\) is given by the simple expression

\[
z + c^\top P'' \text{diag}(z_1, \ldots, z_k), \quad c \in \mathbb{C}^{k-n},
\]

where \(\text{diag}(z_1, \ldots, z_k)\) is a diagonal \(k \times k\) matrix with the coordinates of \(z\) on its diagonal. It follows that \(x\) is in the normal space to the orbit \(G \cdot z\) at \(z\) if and only if \(x - z\) is orthogonal to the rows of \(P'' \text{diag}(z_1, \ldots, z_k)\).

For a smooth path \((z(\tau), \tau) \in (\mathbb{C}^k \setminus Z) \times (0, 1]\) satisfying \(\mathcal{H}(z(\tau), \tau) = 0\), we define

\[
\mathcal{L}(x; \tau) = \text{conj}(P'' \text{diag}(z_1(\tau), \ldots, z_k(\tau)))(x - z(\tau)),
\]

where \(\text{conj}(\cdot)\) takes the (entry-wise) complex conjugate. This suggests Algorithm 4 for tracking one path in the total coordinate space of \(X\), using orthogonal slicing for collecting representatives on the orbits. The algorithm uses the blackbox functions \textsc{Predict} (line 7) and \textsc{Correct}

\begin{algorithm}
\begin{algorithmic}[1]
\Procedure {TrackOrth}{\(G, \mathcal{F}, z(1), P''\)} \Comment{Starting solution: \(G(z(1)) = 0\)}
\State \(z \leftarrow z(1)\)
\State \(\mathcal{H}(x; \tau) \leftarrow (1 - \tau)G(x) + \gamma \tau \mathcal{F}(x)\)
\State \(\tau^* \leftarrow 1\)
\While {\(\tau^* > 0\)} \Comment{The target parameter value for \(\tau\) is 0}
\State \(\mathcal{L}(x; \tau^*) \leftarrow \text{conj}(P'' \text{diag}(z_1, \ldots, z_k))(x - z)\)
\State \((\bar{z}, \Delta \tau) \leftarrow \text{Predict}((\mathcal{H}, \mathcal{L}(x; \tau^*)), z, \tau^*)\) \Comment{Adaptive stepsize predictor routine}
\State \(z \leftarrow \text{Correct}((\mathcal{H}, \mathcal{L}), \bar{z}, \tau^* - \Delta \tau)\) \Comment{Corrector routine, e.g. Newton iteration}
\State \(\tau^* \leftarrow \tau^* - \Delta \tau\)
\EndWhile
\State \textbf{return} \(z\) \Comment{\(z\) is the target solution.}
\EndProcedure
\end{algorithmic}
\end{algorithm}

(line 8) which are assumed to implement a predictor-corrector path tracking scheme, possibly (and preferably) using an adaptive step size control [37, 27, 15, 44, 43]. The function \textsc{Predict} returns a point \(\bar{z}\) and a step size \(\Delta \tau\) such that \(\bar{z}\) is an approximation for a solution of \((\mathcal{H}(x; \tau^* - \Delta \tau), \mathcal{L}(x; \tau^*))\) and \(\Delta \tau\) is a ‘safe’ step size. The function \textsc{Correct} then refines \(\bar{z}\) using, for instance, Newton iteration on \((\mathcal{H}(x; \tau^* - \Delta \tau), \mathcal{L}(x; \tau^*))\) with starting point \(\bar{z}\).
5. Numerical examples

We have implemented the algorithms presented in Section 4 in Julia, making use of the packages Polymake.jl (v0.5.3) [19, 26] and HomotopyContinuation.jl (v2.3.1) [9]. We present a selection of experiments highlighting the advantages of Cox homotopies, as discussed in the introduction. More material and the code is available on https://mathrepo.mis.mpg.de/CoxHomotopies/index.html.

Experiment 1 (A problem from computer vision). The 8-point problem for cameras with radial distortion [28] consists of 9 equations in 9 unknowns. Eight equations are given by

\[
\begin{pmatrix}
p_{i,1}' & p_{i,2}' & 1 + r_i' \lambda \\
f_{1,1} & f_{1,2} & f_{1,3} \\
f_{2,1} & f_{2,2} & f_{2,3} \\
f_{3,1} & f_{3,2} & 1 + r_i \lambda \\
\end{pmatrix}
\begin{pmatrix}
p_{i,1} \\
p_{i,2} \\
1 + r_i \lambda \\
\end{pmatrix}
= 0,
\]

where the parameters \(p_{i,j}', p_{i,j}, r_i, r_i'\) are known and represent distorted image coordinates and distortion radii, respectively. The true image coordinates are known only after the radial distortion parameter \(\lambda\) is recovered. The matrix \(F\) is called the fundamental matrix and satisfies the additional constraint

\[
\det F = 0.
\]

For more details on the model and problem, we refer to [17, 28].

For generic parameters \(p_{i,j}, p_{i,j}', r_i, r_i'\), the number of solutions to equations (20) and (21) is exactly the BKK number \(\delta = 16\). For comparison, the Bézout bound is 768. Homogenizing these equations as in Section 2.3, there are 26 Cox coordinates. In our experiment, we consider nearly degenerate systems satisfying \(q_{i,1}' = -r_{i,1}' + \epsilon\) for \(\epsilon\) small. For \(\epsilon = 10^{-7}\), the `solve` command in HomotopyContinuation.jl reports 8 solutions and 8 paths going towards infinity. Our implementation of Algorithm 2 finds a representative in \(C^{26}\) for each endpoint of these 16 paths in the compact toric variety \(X_\Sigma\).

Since the generic orbit degree \(d = 4583\) appearing in Theorem 4.1 is quite large, we may dynamically enumerate the representatives of each path considered in Algorithm 1 using random monodromy loops. This proves to be far more efficient than tracking a total of \(d\delta = 73328\) paths. Ignoring the pre-computation of the polytope \(P\) and facet matrix \(F^\top\), the entire procedure takes around 15–45s between several runs on the same machine. Most time is spent on the endgame in Algorithm 1. We observe that the 8 nearly-infinite, nearly-singular solutions in the torus \(T \subset \mathbb{C}^9\) are reasonably accurate in the sense of backward error. More precisely, the residuals for the 8 regular solutions are all on the order of unit roundoff \(\approx 10^{-16}\), and for the other 8 are in the range from \(10^{-7}\) to \(10^{-15}\). Here the definition of the residual of an approximate solution \(t\) to \(\hat{f}_1 = \cdots = \hat{f}_s = 0\) is defined, as motivated in [41, App. C], as

\[
\frac{1}{s} \sum_{i=1}^{s} \frac{|\hat{f}_i(t)|}{\sum_{m \in \alpha_i} |c_i,m t^m| + 1}.
\]

Experiment 2 (Intersecting curves on a Hirzebruch surface). Consider again the Hirzebruch surface \(X = H_2\) from Example 2.3. Its fan \(\Sigma\) and facet matrix \(F\) are shown in Figure 2. In this experiment, we illustrate the use of orthogonal slicing (see Subsection 4.4) as an adaptive
strategy for tracking paths in a Cox homotopy. For this, we generate Laurent polynomials $f_1, f_2 \in \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}]$ with support $\mathcal{A}_1 = \mathcal{A}_2 = \mathcal{P}_i \cap M$, where \mathcal{P}_i has facet representation given by F^\top and $a_i = (0, 0, 10, 10)^\top$ for $i = 1, 2$. These Laurent polynomials are random in the sense that the coefficients of the f_i have been drawn from a standard normal distribution. There are 400 solutions to $\hat{f}_1 = \hat{f}_2 = 0$ in $T \subset X$. For illustration purposes, we use an implementation of Algorithm 4 with the naive predictor

$$\text{PREDICT}((\mathcal{H}, \mathcal{L}(x; \tau^*)) , z, \tau^*) = (z, 0.001).$$

We choose three of the 256 paths $z(\tau)$ in the Cox homotopy randomly and keep track of the conditioning of the Jacobian $J_{\tau^*} = \partial_x (\mathcal{H}(x; \tau^*), \mathcal{L}(x; \tau^*))|_{z=x(\tau^*)}$ for $\tau^* = 1, 1 - \Delta \tau, 1 - 2 \Delta \tau, \ldots, 0$, with $\Delta \tau = 0.001$. For comparison, we track the same paths in X using 10 random slices $\mathcal{L}_{\text{rand}}(x)$ given by $\mathcal{L}_{\text{rand}}(x) = A(x - z(1))$ where A is a matrix with entries drawn from a complex standard normal distribution. The results are illustrated in Figure 5. The dashed (orange) curves are obtained by taking the geometric mean of the dotted (grey) curves, which represent the condition number of J_{τ} for 10 random slices. The blue curves represent the condition number of J_{τ} using Algorithm 4. The figure shows that for different randomly generated $\mathcal{L}_{\text{rand}}(x)$, the behavior of the condition number may vary significantly. Using orthogonal slicing, we consistently obtain smaller condition numbers on average. Moreover, the computation of the orthogonal slice causes virtually no computational overhead.

Experiment 3 (Solving equations on a weighted projective space). Consider the system of polynomial equations

$$\hat{f}_1 = (3 + \varepsilon_1)t_1^2 + 7t_1t_2 + 7t_2^2 + 9t_3 + 3t_2 + 9t_3 + 2 = 0,$$

$$\hat{f}_2 = (3 + \varepsilon_2)t_1^2 + 7t_1t_2 + 7t_2^2 + 5t_1 + 2t_2 + 3t_3 + 4 = 0,$$

$$\hat{f}_3 = (3 + \varepsilon_3)t_1^2 + 7t_1t_2 + 7t_2^2 + 4t_1 + 8t_2 + 4t_3 + 9 = 0,$$

in the variables t_1, t_2, t_3. The parameters ε_i are assigned random complex values of modulus 10^{-12}. The normalized volume of the Newton polytope of these equations is 4, which is equal to the number of solutions in $T = (\mathbb{C}^*)^3$. However, using the command `solve` in Homotopy-Continuation.jl, we find only 2 solutions. The polynomials $\hat{f}_1, \hat{f}_2, \hat{f}_3$ homogenize to degree 2 elements in the Cox ring $S = \mathbb{C}[x_1, x_2, x_3, x_4]$ of the weighted projective threefold $X = \mathbb{P}_{1,1,2,1}$, where x_i corresponds to the facet normal e_i for $i = 1, 2, 3$ and $\{x_4 = 0\}$ is the divisor `at
Using Algorithm 2, we find all 4 solutions in X. We observe that the Cox coordinates x_3 and x_4 have absolute value $\approx 10^{-12}$ for two of these solutions, which means they lie close to $D_3 \cap D_4$. The corresponding points in the torus have coordinates of modulus $\approx 10^{12}$. Tracking these solutions in $(\mathbb{C}_\ast)^3$ causes premature truncation in the standard polyhedral homotopy.

We now test our approach on a different, larger system of equations with similar behavior. It is given by $\hat{f}_1 = \cdots = \hat{f}_5 = 0$, where the \hat{f}_i have Newton polytope $P = \{m \in \mathbb{R}^5 \mid F^\top m + a \geq 0\}$, with

$$F^\top = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & -2 & -2 & -2 & -4 \end{bmatrix}, \quad a = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 12 \end{bmatrix}.$$

These correspond to degree 12 equations with 7776 solutions in the weighted projective space $X = \mathbb{P}_{1,2,2,2,4,1}$. We manipulate the coefficients such that 216 of these solutions lie near $D_5 \cap D_6$, meaning that their Cox coordinates x_5 and x_6 have modulus $\approx \varepsilon$. More details on the setup can be found at https://mathrepo.mis.mpg.de/CoxHomotopies/index.html. For $\varepsilon = 10^{-7}$, in five different runs, the polyhedral homotopy used by solve terminates in only 59 up to 69 seconds, but misses between 201 and 207 solutions. The polyhedral homotopy implementation in the blackbox solver phc $-b$ of PHCpack (v2.4.83) [45], for $\varepsilon = 10^{-7}$ and five different runs, reports between 211 and 218 solutions at infinity and between 30 and 66 path failures with a computation time ranging from 13 minutes and 11 seconds to 16 minutes and 57 seconds. Algorithm 2 finds all 7776 solutions in T within 7 minutes and 40 seconds. These computations were performed on a 16 GB MacBook Pro machine with an Intel Core i7 processor working at 2.6 GHz.

Experiment 4 (Equations on a Bott-Samelson variety). Defining $B \subseteq GL_3$ as the subgroup of upper-triangular matrices, GL_3/B is birational to a Bott-Samelson variety. We draw a random complex square polynomial system on GL_3/B from the Khovanskii basis $B = \{1, x, y, z, xz, yz, x(xz + y), y(xz + y)\}$ [2]. That is, we consider the system

$$\hat{f}_i = c_{i,1} x + c_{i,2} y + c_{i,3} z + c_{i,4} xz + c_{i,5} yz + c_{i,6} x^2 + c_{i,7} xy + c_{i,8} y^2,$$

where $i \in \{1,2,3\}$ and $c_{i,j} \in \mathbb{C}$ for $i = 1,2,3$ and $j = 1,\ldots,8$. The BKK bound for $\hat{F} = (\hat{f}_1, \hat{f}_2, \hat{f}_3)$ is 10, which is given the by the normalized volume of the Newton polytope P_i of \hat{f}_i. The number of solutions to $\hat{F} = 0$, however, is known to be equal to the normalized volume of the Newton-Okounkov body associated to B, which is six. Both the Newton polytope P and
the Newton-Okounkov body associated to B are depicted in Figure 6. This deficient root count (six) with respect to the BKK bound (ten) suggests that there are solutions at infinity, which would correspond to solutions of face system(s) of $\hat{\mathcal{F}}$. We can find solutions to face systems via the Cox homotopy.

We homogenize $\hat{\mathcal{F}}$ using the normal fan of \mathcal{P}, whose rays are recorded by the columns of

$$F = \begin{bmatrix}
-1 & 0 & 0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & 1 & 0 & 1 & -1
\end{bmatrix}.$$

Using the Cox homotopy, we find that the homogenization of $\hat{\mathcal{F}}$, \mathcal{F}, has six nonsingular solutions in the torus and four singular solutions whose first Cox coordinate is zero. This indicates that there are solutions to the face system of $\hat{\mathcal{F}}$ associated to the ray $(-1, -1, 0)$. This face system, which is given by $c_{i,7} x(xz + y) + c_{i,8} y(xz + y) = 0$ for $i = 1, 2, 3$, has infinitely many solutions along the curve C defined by $y = -xz$. Therefore, the root deficiency of $\hat{\mathcal{F}}$ is explained by this curve at infinity. The orbit degree $\deg(G \cdot z)$ in this example is five for $z \in (\mathbb{C}^*)^k$. The degree $\deg(G \cdot z)$ for $z \in \pi^{-1}(\zeta)$ drops to three for general points on $D_1 = V_X(x_1)$. Using the specialized endgame in Algorithm 1, we consistently find the homogeneous coordinates of four points on C. Although Lemma 4.4 only accounts for isolated points in $V_X(\mathcal{F})$, this example shows that the Cox homotopy can also detect positive dimensional components on $X \setminus T$. This strategy provides an important first step towards generalizing [4] for computing numerical irreducible decompositions in X.

6. Conclusion

We have introduced Cox homotopies for tracking solution paths of sparse polynomial systems in a compact toric variety X. The algorithm makes explicit use of the construction of X as a GIT quotient of a quasi-affine space by the action of a reductive group G. We have described the degree of (the closure of) G-orbits in this construction in terms of volumes of orbit polytopes, lattice indices, and invariant factors. As we have shown in our experiments, Cox homotopies, as a generalization of (multi)projective homotopies, allow us to deal with solutions on or near the boundary of the dense torus in X in an elegant way, avoiding premature truncation of solution paths and providing insight in the solution structure ‘at infinity’. It inherits the advantage of polyhedral homotopies that only the BKK number many paths need to be tracked. Experiments show that our algorithms provide the first steps towards performing numerical irreducible decomposition in X.

Acknowledgements

The first steps in this research project were taken at the conference Ideals, Varieties and Applications, organized in June 2019 to honor David Cox and his influence in several areas of Commutative Algebra and Algebraic Geometry. Part of the research was conducted during the MATH+ Thematic Einstein Semester on Algebraic Geometry, Varieties, Polyhedra, Computation in Berlin. We want to thank the organizers of these meetings for making this collaboration possible. We also want to thank the Max Planck Institute for Mathematics in the Sciences for its resources used in aiding this collaboration. We are grateful to Sascha Timme for his
valuable help with Julia and HomotopyContinuation.jl and to Frank Sottile for fruitful discussions and useful suggestions. Research of Walker and Yahl was supported in part by Simons Collaboration Grant for Mathematics 636314 and the work of Duff was supported in part by the National Science Foundation under grant DMS-1719968.

References

20. D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

