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Notation and conventions: All rings are commutative with 1, ring homomorphisms are assumed to preserve
1, and we allow 1 = 0 in the zero ring. Given a ring R and elements r1, . . . , rk ∈ R, we write ⟨r1, . . . , rk⟩ for the
ideal that they generate. If n is a positive integer, we define [n] = {1, . . . , n}.
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1 Fundamental Theorem of Algebra

Let K be a field. Recall that K is said to be algebraically closed if every nonconstant univariate polynomial with
coefficients in K has a root. For example, neither the field of real numbers R nor its subfield consisting of rational
numbers Q is algebraically closed, since the polynomial x2 + 1 has no real roots.

Nevertheless, starting from the reals it is easy to construct the field of complex numbers C ⊃ R in which the
polynomial x2 + 1 does have a root: we may take the quotient of the univariate polynomial ring R[x] by its ideal
⟨x2 + 1⟩:

C = R[x]/⟨x2 + 1⟩ (1)

If we write 1 and i for the cosets 1 + ⟨x2 + 1⟩ and x+ ⟨x2 + 1⟩, respectively, you can check that 1 and i span C as
a vector space over R. Moreover, arithmetic with this definition of C works as you’d expect:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.
(2)

Here is one reason why mathematicians love the complex numbers.

Theorem 1 (Fundamental Theorem of Algebra). C is algebraically closed.

It’s likely you’ve seen this theorem stated in a high school algebra course. It’s also possible you’ve seen a
proof—there are several “standard” arguments based on undergraduate-level mathematics.

Exercise 1. Prove that Theorem 1 is equivalent to the assertion that every n×n matrix with complex entries has
a complex eigenvalue.
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I will explain a proof of Theorem 1 that hopefully helps you understand why it is true. The proof is essentially
constructive, and introduces the main ideas behind homotopy continuation, which can be used to numerically
solve polynomial equations in one or more variables. It seems that a proof involving similar ideas was known to
Weierstraß near the end of the 19th century. More recently, the “Bézout series” of papers by Smale and collaborators
have led to a number of results concerning this type of proof.

The key idea, which we will use again and again, is rather simple. For fixed n ≥ 1, a root r of the monic
polynomial xn + an−1x

n−1 + · · ·+ a0 ∈ C[x] corresponds to a point (a0, . . . , an−1, r) in a space of problem-solution
pairs,

Pn := {(a0, . . . , an−1, r) ∈ Cn+1 | rn + an−1r
n−1 + . . .+ a0 = 0}. (3)

Exactly what kind of “space” is Pn? Here are two valid answers:

Answer 1. Pn is a smooth manifold, diffeomorphic to R2n.

Answer 2. Pn is a complex algebraic variety. More precisely, it is a Zariski-closed subset of (n + 1)-dimensional affine
space over C.

In this course, we will cover aspects of algebraic geometry which may allow you to better parse the words
appearing in Answer 2. Answer 1 is also useful, but better suited for those who already know something about
differential topology.

Our space of problem-solution pairs is naturally equipped with two projections: one onto Cn where the coeffi-
cients live, the other onto C where the roots live. Let’s make the first of these projections explicit:

πn : Pn → Cn

(a0, . . . , an−1, r) 7→ (a0, . . . , an−1).

The map πn allows us to formulate Theorem 1 in more geometric terms as saying, the map πn is surjective, or
equivalently, the fiber π−1(a) is nonempty for every a ∈ Cn. Indeed, the map πn is the proptotypical example of a
branched cover—for almost every a ∈ Cn, some small neighborhood Na ∈ Cn containing a pulls back under πn to
a union of n disjoint neighborhoods in Pn:

π−1
n (Na) = ⊔ni=1N(a,ri). (4)

However, there is a “small” subset of points a ∈ Cn where this property fails. This is called the branch locus of the
map πn, also known as the discriminant locus. The discriminant locus turns out to be a hypersurface in Cn: that
is, the set of all points where a single polynomial equation in n variables vanishes. To compute that equation, let

f(x) = xn + an−1x
n−1 + . . .+ a0,

f ′(x) = nxn−1 + (n− 1)an−1x
n−2 + . . .+ a1.

If f and f ′ have a common root, then they have a common linear factor, which implies there exists a polynomial
identity of the form

(bn−2x
n−2 + · · ·+ b0) · f + (cn−1x

n−1 + · · ·+ c0) · g = 0. (5)

When the coefficients of f are given, we can think of eq. (5) as a system of 2n − 1 linear equations in 2n − 1
unknowns—set the coefficients of x2n−2, x2n−2, . . . , 1 all equal to zero. This linear system can be represented in
matrix form as

1 0 · · · 0 n 0 · · · 0
an−1 1 · · · 0 (n− 1)an−1 n · · · 0
...

. . .
. . .

...
...

. . .
. . .

...

a0 a1
. . . 1 a1 2a2

. . . n

0 a0
. . . an−1 0 a1

. . . (n− 1)an−1

...
. . .

. . .
...

...
. . .

. . .
...

0 0 · · · a0 0 0 · · · a1





bn−2

bn−3

...
b0

cn−1

c2n−2

...
c0


=



0
0
...
0
0
0
...
0


. (6)

The (2n−1)×(2n−1) coefficient matrix in eq. (6) is the Sylvester matrix Sx(f, f
′). We may define the discriminant

of f in x to be ∆x,f = detSx(f, f
′).
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Example 1. When n = 2, the space of ps-pairs Pn is a quadric cone in C3. The discriminant locus in C2 is the
parabola defined by ∆x,f = a21 − 4a0 = 0.

Example 2. For n = 3, the Sylvester matrix and discriminant are as follows:

Sx(f, f
′) =

 1 0 3 0 0
a2 1 2 a2 3 0
a1 a2 a1 2 a2 3
a0 a1 0 a1 2 a2

0 a0 0 0 a1

 , ∆x,f = −a21a22 + 4 a0a
3
2 + 4 a31 − 18 a0a1a2 + 27 a20.

This can be verified using the code below. We note that Macaulay2 uses a different convention than ours, in which
the Sylvester matrix is transposed.

d = 3

R = QQ[x,a_0..a_(d-1)]

f = x^d + sum(0..d-1, i -> a_i * x^i)

fx = diff(x,f)

S = sylvesterMatrix(f, fx, x)

det S

discriminant(f, x)

Exercise 2. For particular values of its coefficients a0, . . . , an−1 ∈ C, the degree-n polynomial f has a repeated
root r ∈ C if and only if f and its derivative f ′ both vanish at r. If either condition holds, then the discriminant
∆x,f vanishes at the point (a0, . . . , an−1).

Exercise 3. The discriminant is a polynomial of degree 2n− 2 in the coefficients a0, . . . , an−1.

Exercise 4. (Assumes Galois theory background) The discriminant of the “factored polynomial”
∏

1≤i≤n(x− ri)

in x is given, up to sign, by the formula
∏

1≤i<j≤n(ri − rj)
2.

For given n, we define the discriminant locus ∆n to be the set of all points (a0, . . . , an−1) ∈ Cn where ∆x,f

vanishes. With our interpretation of Pn is a space of problem-solution pairs branched along ∆n, let us return to
the fundamental theorem of algebra. Computing the roots of a polynomial may sometimes be a trivial problem
to solve. For example, we may take the coefficient vector a0 = (0, . . . , 0,−1), which corresponds to a polynomial
xn − 1 whose roots are precisely the n-th roots of unity: thus

π−1
n (a0) = a0 × {exp(2πi/n)}.

Homotopy continuation is the art of deforming the solutions of some trivially solvable problem like a0 into the
solutions of some other problem a1 that you’d actually like to solve. The key player in making this work is a
homotopy function whose solution curves connect points in the fiber π−1

n (a0) to those in the fiber π−1(a1). The
simplest example is called the straight-line homotopy.

Example 3. Suppose we want to solve the equation

g(x) = x2 − x− 1 = 0.

We refer to this as the target system. It is given by the parameter point a1 = (−1,−1) ∈ C2. Our goal is to recover
the fiber

π−1
n (a1) =

{(
a1, (1 +

√
5)/2

)
,
(
a1, (1−

√
5)/2

)}
We realize this system as the deformation of the total degree start system

f(x) = x2 − 1 = 0,

whose parameter values a0 = (0,−1) correspond to the fiber

π−1
n (a0) = {(a0, 1) , (a0,−1)}

The straight-line homotopy allows us to interpolate between roots of f and g:

H(x, t) = (1− t)f(x) + tg(x). (7)
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The key insight is as follows: if we are interested in some solution function x(t) satisfying

H (x(t), t)) = 0 ∀t ∈ [0, 1],

then basic calculus also implies that

d

dt
H

∣∣∣∣∣
(x(t),t)

=

(
dH

dx
· dx
dt

+
dH

dt

) ∣∣∣∣∣
(x(t),t)

= 0 ∀t ∈ [0, 1].

Provided that dH
dx (x(t), t) ̸= 0 for all t ∈ [0, 1], we obtain the differential equation

dx

dt
= −

(
dH

dx

)−1

· dH
dt

. (8)

Using the initial values x(0) = ±1, we can numerically integrate this ODE using predictor/corrector methods.
Roughly speaking, if we have a good approximation of the solution function x(t) at some t ∈ [0, 1], we use a
predictor subroutine to estimate x(t+∆t) for some small timestep ∆t > 0, and then refine our estimate with one
or more iterations of a corrector subroutine. A particularly simple predictor routine is based on Euler’s method:
using 8,

x(t+∆t) ≈ x(t) + ∆t · dx
dt

∣∣∣∣∣
(x(t),t+∆t)

= x(t)−∆t ·

((
dH

dx

)−1

· dH
dt

)∣∣∣∣
(x(t),t+∆t)

. (9)

The corrector subroutine is usually Newton’s method: a single iteration updates the predicted value from 9 using
the formula

x(t+∆t)← x(t+∆t)−

((
dH

dx

)−1

·H

)∣∣∣∣
(x(t+∆t),t+∆t)

.

Although homotopy continuation is implemented “under the hood” in Macaulay2 methods like solveSystem,
it may be useful to see what it looks like to implement a predictor/corrector method “from scratch.” Here is a very
simple version applied to our example.

R = CC[t,x]

f = x^2 - 1

g = x^2 - x - 1

H = (1-t) * f + t * g

Ht = diff(t, H)

Hx = diff(x, H)

(t0, x0) = (0.0_CC, 1.0_CC)

sub(H, matrix{{t0,x0}}) -- the residual is small, so x0 is a valid starting solution

(ti, xi) = (t0, x0)

dt = 1e-2

while ti < 1.0 do (

ti = min(ti + dt, 1.0);

-- predict w/ Euler's method

Hxi = sub(Hx, matrix{{ti, xi}});

Hti = sub(Ht, matrix{{ti, xi}});

xti = -Hti / Hxi;

xi = xi + dt * xti;

-- correct with Newton's method

Hxi = sub(Hx, matrix{{ti, xi}});

Hi = sub(H, matrix{{ti, xi}});

xi = xi - Hi / Hxi;
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<< "estimate x(" << ti << ") = " << xi << " w/ residual " << sub(H, matrix{{ti, xi}})

<< endl;

)

You should try playing around with this code. Here are a few respects in which this numerical routine is naive:

1. In practice, the number of starting solutions is potentially much larger than 2.

2. Euler’s method is a simplistic predictor: in practice, it its common to use the fourth-order Runge Kutta
method, or an even more sophisticated method.

3. Only one step of Newton’s method is used.

4. A fixed stepsize of 10−2 is used. In practice, we want to choose this adaptively since the solution function
could be quite “curvy.”

5. We do not check whether or not the printed solution residuals remain small for all t ∈ [0, 1], or that the
derivatives “remain reasonable.”

6. If we want to solve some other target system, then
(
dH
dx

)−1
need not exist for all solutions of all systems

corresponding to points along the straight-line segment (1 − t)a0 + ta1. This occurs precisely when this
segment (1− t)a0 + ta1 intersects ∆n. Notice that this may occur even if a1 /∈ ∆n.

To get around the last of these difficulties, we could try to design a path connecting a0 to a1 that would avoid
∆n. If we are ok with a little bit of randomness, then an extremely elegant solution may be found in the so-called
gamma trick. With this trick, we modify the straight-line homotopy of equation eq. (7) by multiplying the start
system by a random complex γ number of modulus one:

H(x, t) = γ · (1− t)f(x) + tg(x) (10)

The importance of this maneuver is that can multiplication by γ puts the starting parameters γ ·a0 in “general
position” with respect to the target parameters a1. Along these lines, we have the following proposition.

Proposition 1.1. Suppose, for some fixed target parameters a1 ∈ Cn, that ∆x,f (a1) ̸= 0. Then, for almost all
starting parameters a0 ∈ Cn with ∆x,f (a0) ̸= 0, the straight-line segment connecting a0 and a1 is disjoint from the
discriminant locus for all real t.

Proof. The discriminant locus ∆n ⊂ Cn ∼= R2n is a hypersurface of complex dimension dimC(∆n) = (n − 1),
and so it has dimR(∆n) = 2n − 2. The union of all real lines connecting a0 to some point in ∆ has dimension
(2n − 2) + 1 = 2n − 1 in R2n, so it has Lebesgue measure zero. The result holds for all a1 in the complement of
this set.

The gamma-trick mentioned above is analagous to Proposition 1.1—note however, that γ ·a1 does not encode a
monic polynomial. We will return to this trick later on in a more general setting. In the meantime, Proposition 1.1
already gives us enough for us to prove Theorem 1.

(Proof of Theorem 1): Let a1 be the parameter values corresponding to some univariate polynomial. For some
nearby parameter values a0, the corresponding polynomial has exactly n complex roots. This can be seen by
numerically continuing the roots of the total-degree start system, given by

f(x) = xn − 1 w/ roots x = e2πik/n, k = 0, . . . , n− 1,

to some randomly chosen a0 in a small Euclidean ball around a1 using a straight-line homotopy and appealing
to Proposition 1.1.

Now consider the segment (1 − t)a0 + ta1. Reparametrizing if necessary, we may assume that this segment is
disjoint from ∆n for all t ∈ [0, 1)—indeed, this segment intersects ∆n in at most n(n− 1) points. If a1 /∈ ∆n, this
holds for all t ∈ [0, 1], and the roots corresponding to points in the fiber π−1

n (a0) can be numerically continued to the
roots corresponding to π−1

n (a1). Otherwise, a1 ∈ ∆n, in which case we have a root with some multiplicity greather
than 1. In the space of problem-solution pairs we may take a sequence (a(m), x(m)) ∈ Pn such that a(m) → a1 lies
along this segment. We get a limiting value x∗ = limm→∞ x(m) on the Riemann sphere P1

C, which cannot be a pole
of the limiting function x 7→ f(x;a1) since it is a polynomial. Thus x∗ is the desired root.
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2 Symbolic vs numeric

It is certainly nice to know that polynomials have complex roots. However, we would like to actually to compute
these roots. There are several basic difficulties: consider, for instance, the roots of f(x) = x2− 2 = 0. As any good
algebraist would do, we could simply define them into existence, extending Q by the field Q[x]/⟨f(x)⟩. But this
does not help us with basic questions like what the size of a root is. Can we actually make sense sense of

√
2 ≈ 1.414213562373095048801688724209698078, (11)

and various other well-known“identities”? In, say, a real analysis course, you might have proved that every real
number can be represented in base-b representation: for any fixed integer b ≥ 2, any r ∈ R may be written as

r =

∞∑
i=k

cib
−i (12)

for some k ∈ Z, with each ci ∈ {0, 1, . . . , b − 1}. One may show that r ∈ Q if and only if there exists such a
representation with only finitely many ci = 0. When r =

√
2, such a representation would require storing infinitely

many ci, which cannot be done on a computer with finite memory.
Turing had the idea that we could represent r =

√
2 as a computer program that can compute a representation

of the form eq. (12) to any desired accuracy. Concretely, we could use Newton’s method in rational arithmetic.
The same idea allows us to represent any algebraic number, provided we know its minimal polynomial over Q. Here
is a Macaulay2 function giving such a representation:

sqrtAppx = eps -> (

R := QQ[x];

f := x^2-2;

df := diff(x,f);

xHat := 3/2;

while (xHat^2 - 2) > eps^2 do (

fxHat := sub(f, x => xHat);

dfxHat := sub(df, x => xHat);

xHat = xHat - (1/dfxHat) * fxHat;

);

xHat

)

For example, with ϵ = 1/1000 we obtain the rational approximation 665857
470832 . In fact, this agrees with the approxi-

mation of eq. (11) to 11 digits.

i1 : r = sqrtAppx(1/1000)

665857

o1 = ------

470832

o1 : QQ

i2 : sub(r, RR)

o2 = 1.41421356237469

o2 : RR (of precision 53)

Exercise 5. Show that for any given input ϵ ∈ Q>0, the output of sqrtAppx is a rational number x̂ ∈ Q with
|x̂−

√
2| < ϵ.

Notice that the output of sqrtAppx was a rational number, but to obtain an approximate decimal expansion
(namely eq. (12) with b = 10), it was subsequently converted to a real number data type. In practice, real numbers

6



are usually represented using fixed precision floating point arithmetic. To be more precise, most often what is used
is the IEEE binary64 standard, also called double-precision floating-point. This uses numbers of the form

± 2e · (1 +
52∑
i=1

ci2
−i) (13)

where e is an 11-bit integer in the range [−1022, 1023] and c1, . . . , ck ∈ {0, 1}. The “64” refers to the 52 + 1 + 11
bits of information appearing in this number: note that the “leading 1” in eq. (13) does not need to be explicitly
stored.

Since the set of such numbers is not closed under addition or multiplication, floating-point operations involve
rounding. Rounding of individual addition and multiplication operations are close to the “true values.” However,
the result of multiple floating point operations may be inaccurate, particularly when quantities of large or varying
magnitudes are involved. For example,

i1 : eps = 10.0^(-16)

o1 = 1e-16

o1 : RR (of precision 53)

i2 : epsPlus = 1.0 + eps

o2 = 1

o2 : RR (of precision 53)

i3 : notEps = epsPlus - 1.0

o3 = 0

o3 : RR (of precision 53)

In Macaulay2, it is possible to work with extended-precision real numbers, which are implemented in an external
library called MPFR.

i1 : defaultPrecision = 54

i2 : eps = 10.0^(-16)

o2 = 1e-16

o2 : RR (of precision 53)

i3 : epsPlus = 1.0 + eps

o3 = 1

o3 : RR (of precision 53)

i4 : epsPlus - 1.0

o4 = 1e-16

o4 : RR (of precision 53)

A more dramatic example of cancellation comes from Wilkinson’s polynomial,

p(x) = (x− 1)(x− 2)(x− 3) · · · (x− 20). (14)

Although innocent-looking when in factored form, the coefficients of p in the monomial basis are huge. In fact, the
coefficients of x2, . . . , x10 cannot be exactly represented as numbers in the form of eq. (13). Thus, if we were to
expand eq. (13) using floating-point arithmetic, the coefficients computed would differ from their true values, and
the roots of the resulting polynomial would differ noticeably from the original values.

i2 : ringQ = QQ[x]

o2 = ringQ

o2 : PolynomialRing

i3 : wQ = product for i from 1 to 20 list (x-i)

20 19 18 17 16

o3 = x - 210x + 20615x - 1256850x + 53327946x

15 14 13

-1672280820x + 40171771630x - 756111184500x
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12 11 10

+11310276995381x - 135585182899530x + 1307535010540395x

9 8

-10142299865511450x + 63030812099294896x

7 6

-311333643161390640x + 1206647803780373360x

5 4

-3599979517947607200x + 8037811822645051776x

3 2

-12870931245150988800x + 13803759753640704000x

1

-8752948036761600000x + 2432902008176640000

o3 : ringQ

i4 : sort roots wQ

o4 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

o4 : List

i5 : ringR = RR[x]

o5 = ringR

o5 : PolynomialRing

i6 : wR = product for i from 1 to 20 list (x-i);

i7 : sort roots wR

o7 = {1, 2, 3, 4, 5, 6, 7, 8.00002, 8.99992, 10.0002, 10.9996, 12.0005, 12.9994, 14.0005,

14.9996, 16.0002, 16.9999, 18, 19, 20}

o7 : List

Floating-point arithmetic is undeniably useful in many domains of computational mathematics, and computa-
tional algebraic geometry is no exception. However, the toy example of Wilkinson’s polynomial already suggests
we might be able to gain something by postponing inexact computation until we really need it. Moreover, a math-
ematician trying to prove something would wisely be skeptical of relying on such inexact calculations. Surprisingly,
one can sometimes certify the correctness of particular types of inexact computations. Notwithstanding, methods of
symbolic computation, most prominently Gröbner bases, are an extremely effective tool in computational algebraic
geometry, which can also be used to prove many foundational results (such as Hilbert’s basis theorem (Theorem 2
and Nullstellensatz (Theorem 5).) Thus, we will spend a lot of time studying them.

3 Gröbner bases and normal forms

In general, we are interested in solving problems of the following form

f1(x;p) = f2(x;p) = · · · = fs(x;p) = 0,

where x ∈ Cn are unknowns, or variables, p ∈ Cm are given data or parameters, and f1, . . . , fs are equations are
polynomial functions1 of x and p. Here is a simple example with n > 1.

Example 4. For rectangle with length x1 and width x2, we can easily compute the area p1 and the perimeter p2.
The inverse problem asks: given p = (p1, p2) ∈ R2, can we recover x = (x1, x2) ∈ R2 satisfying

f1(x;p) = 2(x1 + x2)− p1 = 0,

f2(x;p) = x1x2 − p2 = 0.
(15)

Here is some Macaulay2 code exploring symbolic and numerical solutions to this problem:

1Or perhaps even rational/algebraic functions
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(p1, p2) = (10, 6)

R = QQ[x_1,x_2]

f1 = 2*(x_1+x_2) - p1

f2 = x_1*x_2 - p2

needsPackage "NumericalAlgebraicGeometry"

solveSystem {f1,f2}

I = ideal(f1,f2)

Ielim1 = eliminate(I, x_1)

fx2 = first Ielim1_*

roots fx2

The blackbox solver solveSystem uses a homotopy continuation procedure analagous to that of the previous
section. The command eliminate relies on Gröbner bases. To eliminate variables “by hand”, we can try to work
with various “polynomial consequences of eq. (15). For instance, if g1, g2 ∈ C[x] are arbitrary polynomials in the
unknowns, these equations also imply that

g1(x) · f1(x;p) + g2(x) · f2(x;p) = 0.

A fortuitous choice is given by (g1, g2) = (x2,−2), from which we obtain

2x2
2 − p1x2 + 2p2 = 0.

The roots of this univariate polynomial can be computed in radicals:

x2 =
p1 ±

√
p21 − 16p2
4

= 2 or 3,

from which we also easily obtain, using the equation for perimeter,

x1 = p1/2− x1 =
p1 ∓

√
p21 − 16p2
4

= 3 or 2.

Our search for “polynomial consequences” in the previous example motivates the following definition.

Definition 3.1. Let K be a field, and K[x] = K[x1, . . . , xn] be the polynomial ring over K in n indeterminates.
For fixed f1, . . . , fs ∈ K[x], the ideal generated by these polynomials is the set

⟨f1, . . . , fs⟩ =

{
s∑

i=1

gifi | g1, . . . , gs ∈ K[x]

}
.

Hilbert’s basis theorem states that every polynomial ideal has the form given in Definition 3.1. In hopes of reduc-
ing multivariate polynomial system solving to univariate polynomial system solving, we pose the elimination prob-
lem: for a given ideal ⟨f1, . . . , fs⟩ ⊂ C[x], how can we compute generators for the ideal ⟨f1, . . . , fs⟩ ∩ K[x2, . . . , xn]?
We will show how a complete solution to this problem can be obtained by computing a Gröbner basis with respect
to a lexicographic order (Definition 3.3.)

In addition to the elimination problem, we also consider the ideal membership problem: for given f, f1, . . . , fs ∈ K[x],
can we decide whether or not f ∈ ⟨f1, . . . , fs⟩? In the univariate case n = 1, it is easy to solve this problem using
the division algorithm.

Example 5. Let g = x2 − 1, and consider the ideal I = ⟨g⟩. We use the division algorithm to show that f =
x4 + x3 − x− 1 ∈ I. Note that we have underlined the terms of highest degree. Anticipating the multivariate case,
we write LT(g) = x2 and LT(f) = x4 to denote the leading term of f and g. The condition f ∈ I is the same as
saying f ≡ 0 mod I, or, since I principal, that I is a polynomial multiple of g. The division algorithm proceeds as
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follows:

x4 + x3 − x− 1 = x2 · LT(g) + x3 − x− 1

= x2 ·

g + (LT(g)− g︸ ︷︷ ︸
1

)

+ x3 − x− 1

≡ x2 + x3 − x− 1 mod I

= x3 + x2 − x− 1

= x · (x2 − 1) + x+ x2 − x− 1

≡ x2 − 1 mod I

≡ 0 mod I.

There are several obstacles to adapting polynomial division to the multivariate case n > 1. One obstacle is that
most ideals are not principal. Another obstacle is that the concept of a leading term does not extend uniquely.
Indeed, the usual ordering of monomials when n = 1,

1 < x < x2 < x3 < · · ·

has a number of properties that are easy to take for granted. These properties are crystalized in the following
definition. Recall that a monomial in K[x1, . . . , xn] is a polynomial with exactly one term whose coefficient equsls
1K. A monomial xα1

1 · x
α2
2 · · · · xαn

n may be written more compactly in multi-index notation as xα, where α =
(α1, . . . , αn) ∈ Zn

≥0 is a lattice point in the positive orthant of Rn. For visualization purposes, it is standard to
identity monomials and lattice points (especially when n = 2 or 3.)

Definition 3.2. A monomial order is any total, multiplicative order < on the set of monomials in K[x1, . . . , xn]
such that 1 is the minimum element.

Exercise 6. There is a unique monomial order on the univariate polynomial ring K[x].

Though they may seem unmotivated at first, it is worthwhile to build up a repertoire of several different
monomial orders. For now, we define two classes of monomials orders that are easy to understand, though not
always the most useful.

Definition 3.3. The lexicographical order with x1 > x2 > · · · > xn−1 > xn, denoted in Macaulay2 by Lex, is
defined as follows:

xα > xβ ⇔ α− β = (0, 0, . . . , 0, αi − βi︸ ︷︷ ︸
>0

, . . .).

Definition 3.4. The graded lexicographical order with x1 > x2 > · · · > xn−1 > xn, denoted in Macaulay2 by GLex,
is defined as follows:

xα > xβ ⇔
n∑

i=1

(αi − βi) > 0, OR

n∑
i=1

(αi − βi) = 0, xα >Lex x
β.

In more plain language, Lex compares monomials as though they were words in a dictionary, whereas GLex

compares monomials based on their total degree, breaking any ties with Lex as needed. Note that both orders
depend on the chosen ordering of the variables: in other words, Definitions 3.3 and 3.4 describe a total of 2n!
monomial orders on K[x1, . . . , xn].

An important property of monomial orders is that they are all well orders; that is, given < as in Definition 3.2,
any nonempty set of monomials has a smallest element with respect to < . This can proved using the following
special case of Hilbert’s basis theorem.

Lemma 3.5 (Gordan’s Lemma). Every monomial ideal is finitely generated by monomials. That is, if I ⊂ K[x] =
K[x1, . . . , xn] is an ideal such that every element of I has the form

g1x
α1 + · · ·+ gsx

αs w/ xα1 , . . . , xαs ∈ I, (16)

then I = ⟨xβ1 , . . . , xβk⟩ for some finite subset {xβ1 , . . . , xβk} ⊂ I.
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Remark: Lemma 3.5 is sometimes called “Dickson’s Lemma”, despite the fact that Gordan proved it well
before Dickson did.

Proof. Induction on n. If n = 1, then I is a principal ideal. Writing I = ⟨p⟩, then writing p in the form 16 shows
that p is divisible by some xk ∈ I, so the chain of inclusions

⟨xk⟩ ⊂ I = ⟨p⟩ ⊂ ⟨xk⟩

shows that I = ⟨xk⟩ is finitely generated by a single monomial.

For n > 1, assume the result for all smaller n. Define for each j ∈ Z≥0 the monomial ideal

Ij = ⟨xα1
1 · · ·x

αn−1

n−1 | x
α1
1 · · ·x

αn−1

n−1 xj
n ∈ I⟩.

By inductive hypothesis, each Ij is finitely generated by monomials. Moreover, since we have an ascending chain
I0 ⊂ I1 ⊂ I2 ⊂ · · · , the union ∪k≥0Ik is also an ideal that is finitely generated by monomials. This implies that
the ascending chain eventually stabilizes: that is, there exists some r such that Ir = Ir+k for all k ≥ 0. It follows
that xα ∈ I iff xα1

1 · · ·x
αn−1

n−1 ∈ Ir. If B0, . . . , Br are monomial generating sets for I0, . . . , Ir, then it follows that

I = ⟨B0 ⊔ xnB1 ⊔ x2
nB2 ⊔ · · · ⊔ xr

nBr⟩,

since monomial in I (and consequently, also every polynomial in I) belongs to the ideal on the right.

Corollary 3.6. Every monomial order is a well-order.

Proof. Let S = {xαi | i ∈ I} be a nonempty set of monomials. Gordan’s lemma implies there exist monomials
xβ1 , . . . ,xβs such that

⟨S⟩ = ⟨xβ1 , . . . ,xβs⟩.

Moreover, since each xβi is divisible by some element of S, we may assume WLOG that xβi ∈ S for all i. Since
any element of S is divisible by one of these monomial generators, the smallest generator with respect to < is the
minimum element of S.

For any fixed monomial order < on K[x] and any nonzero polynomial f ∈ K[x], we may write

f = c1x
α1 + c2x

α2 + · · ·+ ckx
αk

with its coefficients in sorted order, i.e.
xαk < · · · < xα2 < xα1 .

The leading term/coefficient/monomial of f with respect to < are then defined as follows:

LT<(f) = c1x
α1 ,

LC<(f) = c1,

LM<(f) = xα1 .

When f = 0, those notions are left undefined. When LC<(f) = 1, we say f is monic with respect to < .
Emulating the pattern of Example 5, let us try to solve the ideal membership problem on an example, using

some of the monomial orders introduced so far.

Example 6. Consider the Lex order on Q[x, y, z] with x < y < z, and let

f = z2 − y

f1 = y − x,

f2 = z2 − x.

We would like to decide the ideal membership query

f ∈ I = ⟨f1, f2⟩?

11



We begin by trying to divide LT<(f) by LT<(f1) or LT<(f2)—if that succeeds, then we can write

f = xα · fi + f̃

for some f̃ with strictly smaller leading monomial: LM<(f̃) < LM<(f). Applying the same procedure with f̃ in
place of f, we obtain the following sequence of operations:

f = z2 − y

= (z2 − x)︸ ︷︷ ︸
f2

+x− y

≡ −y + x mod I

= −f1
≡ 0 mod I.

This calculation produces a certificate of ideal membership in the form of the multipliers (g1, g2) = (1,−1) appearing
in Definition 3.1:

f = 1 · f1 + (−1) · f2 ∈ I.

Now suppose instead that we chose the Lex order with the order of variables reversed: x > y > z. Our
ideal-membership query is the same (up to sign) as before), but we have different leading terms:

y − z2 ∈ I = ⟨x− y, x− z2⟩?

Applying the same algorithm as before, we see that LT<(f) is not divisible by LT<(f1) or LT<(f2), so we do not
succeed in our strategy of rewriting f as an element of I. Notice how, in the previous case, the leading monomials
LM(f1),LM(f2) function like “pivots” in the familiar algorithm of Gaussian elimination. When we change the
monomial order in this example, the number of these “pivots” drops from 2 to 1! Fortunately, this is not a
deficiency of the monomial order, but rather of the generating set used to represent I. Indeed, if we were to discover
independently that f ∈ I, we could add it to our set of generators for I, thus obtaining a new leading term y2.
The definition of a Gröbner basis captures in precise terms when a generating set of an ideal has “enough” leading
terms to make the division algorithm work.

Definition 3.7. Fix a monomial order < on K[x], and let I ⊂ K[x] be an ideal. The initial ideal of I with respect
to < is defined as follows:

in<(I) = ⟨LM<(f) | f ∈ I⟩. (17)

A Gröbner basis G = {g1, . . . , gs} ⊂ I with respect to < is a finite subset of I whose leading monomials generate
the initial ideal: in<(I) = ⟨LM<(g1), . . . ,LM<(gs)⟩.

Example 7. Continuing with Example 6, consider the following Macaulay2 session:

i1 : R = QQ[z,y,x];

i2 : f = z^2 - y;

i3 : f1 = y-x;

i4 : f2 = z^2 - x;

i5 : I = ideal(f1, f2);

o5 : Ideal of R

i6 : G = gb I

o6 = GroebnerBasis[status: done; S-pairs encountered up to degree 1]

o6 : GroebnerBasis

i7 : gens G

o7 = | y-x z2-x |

It seems that {f1, f2} is a Gröbner basis for I, but with respect to which monomial order? The following comparisons
rule out the possibility of Lex or GLex.

i8 : y < z

o8 = true

i9 : x < y -- so z > y > x

o9 = true

12



i10 : x^2 < y -- not Lex!

o10 = false

i11 : y^2 < z*x -- not GLex!

o11 = false

As it turns out, any object of class PolynomialRing such as R in this example represents not just a polynomial
ring, but a polynomial ring together with several pieces of satellite data, including a monomial order. The mystery
monomial order, used by default in Macaulay2, is revealed to be GRevLex.

i12 : describe R

o12 = QQ[z, y, x, Degrees => {3:1}, Heft => {1},

MonomialOrder => {MonomialSize => 32}, DegreeRank => 1]

{GRevLex => {3:1} }

{Position => Up }

Definition 3.8. The graded reverse lexicographical order with x1 > x2 > · · · > xn−1 > xn, denoted in Macaulay2
by GRevLex, is defined as follows:

xα > xβ ⇔
n∑

i=1

(αi − βi) > 0, OR

n∑
i=1

(αi − βi) = 0, α− β = (. . . , αi − βi︸ ︷︷ ︸
<0

, . . . , 0)

Thus GRevLex first compares monomials by total degree, then breaks ties by picking the greater monomial to be
the one with the smaller power of xn, then breaking further ties using xn−1, and so on.

To compute Gröbner bases using the Lex orders considered originally in Example 6, we must specify these or-
ders manually:

i8 : S = newRing(R, MonomialOrder => Lex);

i9 : gens gb sub(I, S)

o9 = | y-x z2-x |

1 2

o9 : Matrix S <--- S

i10 : T = QQ[reverse gens R, MonomialOrder => Lex];

i11 : gens gb sub(I, T)

o11 = | y-z2 x-z2 |

1 2

o11 : Matrix T <--- T

Before explaining how to compute Gröbner bases in the next section, we will show that they lead to a simple,
constructive proof of Hilbert’s basis theorem, and that they enable us to solve both the ideal membership problem
and the elimination problem. To begin, we observe that a Gröbner basis, a priori only a subset of some ideal, is in
fact a generating set for that ideal.

Proposition 3.9. Let G be a Gröbner basis for I. Then G generates I.

Proof. Suppose not—then, since ⟨G⟩ ⊊ I, there exists a polynomial f ∈ I \ ⟨G⟩. Appealing to Corollary 3.6, we
may choose such an f with LM<(f) minimal. Then, since G is a Gröbner basis, we have LT<(f) = cmLT<(g)
for some g ∈ G, c ∈ K and monomial m. If we set f̃ = f − cmg, then we have f̃ ∈ I and LM<(f̃) < LM<(f),
contradicting the minimality of f.

Proposition 3.9 leads directly to a cornerstone result in commutative algebra.

Theorem 2 (Hilbert’s Basis Theorem). Every ideal in K[x] is finitely generated.
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Proof. Let I ⊂ K[x] be any ideal. Gordan’s lemma (Lemma 3.5) implies that I has a Gröbner basisG = {g1, . . . , gs}.
Thus I = ⟨g1, . . . , gs⟩ by Proposition 3.9.

Exercise 7. Show that every ascending chain of ideals in K[x] stabilizes. That is, if we have ideals I1, I2, . . . in
this ring with

I1 ⊂ I2 ⊂ · · · ,

then there exists some n ∈ Z≥0 such that for all m ∈ Z≥0 we have In = In+m.

An important property of the univariate division algorithm as that the remainder and quotient representation
are unique. The next example illustrates some subtleties in the multivariate case.

Example 8. As in Example 6, let I = ⟨x − y, x − z2⟩, with the Lex x > y > z order. Division of f = x by the
given generators depends on how they are ordered: we could get a “remainder” of y or z2, depending on the order
in which we test the divisibility of LM<(f) by the leading monomials of the generators.

Thus, in general, the quotient and remainder when we try to divide a polynomial by a generating set of an ideal
are not unique. However, no such ambiguity can arise when the generators form a Gröbner basis.

Proposition 3.10. Fix a monomial order < and an ideal I ⊂ K[x]. Then any f ∈ K[x] has a unique normal form
NFI,<(f) ∈ K[x] such that f −NFI,<(f) ∈ I and no monomial of NFI,<(f) is contained in in<(I).

The monomials not contained in in<(I) are called the standard monomials for I with respect to < .

Proof. For the existence statement, let G be a Gröbner basis for I. For any polynomial f , we can run the naive di-
vision algorithm, first rewriting any term of f that is divisible by in<(g) for some g ∈ G. This terminates in finitely
many steps by Gordan’s lemma, and we are left with a remainder which is either 0 or whose leading monomial is
standard. Continuing in this way for any non-leading terms in f , we obtain a remainder r which is either 0 or such
that all monomials in r are standard.

For uniqueness, suppose r, r′ are both such that f − r, f − r′ ∈ I and r, r′ are in the span of standard mono-
mials. This implies r − r′ ∈ I is also in the span of the standard monomials. We cannot have r ̸= r′, since this
would imply that LM<(r − r′) ∈ in<(I) is standard.

Example 9. Let I ⊂ S = Q[r11 . . . r33] be the ideal defining al 3× 3 orthogonal matrices: that is,

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , I = ⟨f1, . . . , f9⟩ = ⟨entries of RRT − I3×3⟩.

For any monomial order, the normal form of f = (detR)2 is 1. This can be computed using the operator %.

i1 : S = QQ[r_(1,1)..r_(3,3)];

i2 : R = genericMatrix(S,3,3);

3 3

o2 : Matrix S <--- S

i3 : I = ideal(R * transpose R - id_(S^3));

o3 : Ideal of S

i4 : f = (det R)^2;

i5 : f % I

o5 = 1

o5 : S

Similarly, you can use the operator // find coefficients h1, . . . , h9 ∈ S expressing f =

9∑
i=1

hifi + 1.

Exercise 8. Show that the mapping from K[x] into itself that associates a polynomial with its normal form is
K-linear. Can you describe its image and kernel?
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MEMBERSHIP (f, I)

1. Compute a Gröbner basis G for I wrt. some monomial order <,

2. Let r = NFI,<(f), computed using the division algorithm and G from the first step.

3. Output YES if r = 0 and NO otherwise.

Figure 1: An algorithm for deciding ideal membership f ∈ I.

The normal form furnishes a simple algorithm that solves the ideal membership problem. This algorithm is
described in Figure 1. Its correctness follows from Proposition 3.10. To make it effective, all that we need is a
procedure for computing the Gröbner basis G in step 1. This can be done using Buchberger’s algorithm, given
in Figure 2.

It is important to note that Gröbner bases are not unique: indeed, if G is a Gröbner basis for I, we can add in
more polynomials in I and still have a Gröbner basis. However, if and when we need uniqueness, we may appeal
to the notion of a reduced Gröbner basis.

Definition 3.11. We say a Gröbner basis G is reduced if every element of g ∈ G is monic, all non-leading monomials
of g are standard, and the set {LM<(g) | g ∈ G} minimally generates in<(I): that is, no proper subset of the
leading monomials generates in<(I).

Proposition 3.12. For any ideal I ⊂ K[x] and monomial order <, there exists a unique reduced Gröbner basis
for I with respect to < .

Proof. To get a reduced Gröbner basis from an arbitrary Gröbner basis G, replace every polynomial in G with its
normal form and remove any normal forms that equal zero. For uniqueness, suppose G and G′ are two reduced
Gröbner bases for I. Then for any g ∈ G there exists a g′ ∈ G′ such that LT<(g) = LT<(g

′), and reducedness
implies that g − g′ is its own normal form. On the other hand, g − g′ ∈ I, so we must have g = g′.

The commands gb and groebnerBasis produce “almost-reduced” Gröbner bases in the sense that the generators
might not be monic, but the other conditions of Definition 3.11 are satisfied.

Finally, we address the elimination problem. As it turns out, there is a wide class of elimination orders that
can be useful for this task. In what follows, we consider polynomial rings in which the variables form two “groups.”
Generalizing to the case of more than two groups is straightforward.

Definition 3.13. Consider a polynomial ring K[x,y] = K[x1, . . . , xn, y1, . . . , ym]. We say that < is an elimination
order with x > y if any monomial involving a single variable from x alone is greater than all monomials in y alone.

It may help to think as variables in the group x as being “expensive” and variables in y as being “cheap”.
The normal form maps defined by an elimination order try to rewrite “expensive” monomials in terms of “cheap”
ones. For example, the Lex order on K[x1, . . . , xn] with x1 > · · · > xn is an elimination order with respect to the
grouping x = {x1}, y = {x2, . . . , xn}. For the singleton grouping x1 = {x1}, . . . ,xn = {xn}, this Lex is also an
elimination order with x1 > · · · > xn.

Theorem 3. Let I ⊂ K[x,y] be an ideal and < an elimination order with x > y. Suppose G is a Gröbner basis
for I with respect to < . Then Gy = G∩K[y] is a Gröbner basis for the elimination ideal Iy = I ∩K[y]. Moreover,
if G is reduced, then Gy is also reduced.

Proof. If f ∈ Iy, then LM<(f) must be by divisible LM<(g) for some g ∈ G. Since LM<(f) ∈ C[y], we must
have LM<(g) ∈ C[y] as well. The fact that < is an elimination order then implies that g ∈ C[y]. Thus, for the
order on C[y] induced by <, we see that Gy is a Gröbner basis. When G is reduced, reducedness of Gy follows
straightforwardly from Definition 3.11.

Example 10. If we want to know all polynomial relations on the set of 2× 2 minors of the 2× n matrix

X =

(
x11 · · · x1n

x21 · · · x2n

)
,

we should first form an ideal with
(
n
2

)
generators in a ring with 2n+

(
n
2

)
variables, namely

I = ⟨yS − det(XS) | S ⊂ [n], #S = 2⟩ ⊂ Q[x,y],
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BUCHBERGER (I,<):

1. Initialize:

1. A set of unprocessed S-pairs, S-pairs = {(f1, f2), . . . , (fs−1, fs})
2. A partial Gröbner basis, G = {f1, . . . , fs}

2. while ∃ an unprocessed S-pair, (f, p) ∈ S-pairs:

i. h← Sf,p

ii. while ∃g ∈ G, terms t, th w/ th a term of h and th = t · LT<(g):

update h← h− t · g
iii if h ̸= 0

update G← G ∪ {h}
update unprocessed S-pairs, S-pairs = (S-pairs \{(f, p)}) ∪ {(g, h) | g ∈ G}

3. Output G

Figure 2: Buchberger’s algorithm for computing a Gröbner basis of an ideal I = ⟨f1, . . . , fs⟩ in a polynomial ring
K[x] with respect to a monomial order < .

and then compute the elimination ideal for an appropriate elimination order. The code below does exactly this
for n = 9 using one of the so-called block or product orders. This is a monomial order that compares monomials
using GRevLex in the variables x first and then breaks ties using GRevLex in the variables in y. We see that the
reduced Gröbner basis G for I has 330 elements. For the elimination ideal Iy, we have a reduced Gröbner basis
Gy of cardinality 126. What happens if you use Lex instead?

n = 9

R = QQ[x_(1,1)..x_(2,n), apply(subsets(n,2), S -> y_S), MonomialOrder => Eliminate(2*n)]

X = transpose genericMatrix(R,n,2)

I = ideal apply(subsets(n,2), S -> y_S - det X_S)

elapsedTime G = gens gb I;

4 Buchberger’s algorithm

Suppose we are given a polynomial ideal specified by a finite set of generators: I = ⟨f1, . . . , fs⟩. We would like to
compute a Gröbner basis for I with respect to a particular monomial order <. In particular, this will allow us to
determine whether or not the original generators form a Gröbner basis. To make progress towards computing a
Gröbner basis, we need to generate leading terms that aren’t already in the ideal < in<(f1), . . . , in<(fs)⟩. One way
to do this is to take a pair (fi, fj) and cancel leading terms by producing the following element of I:

Sfi,fj =
lcm(LM<(fi),LM<(fj))

LT<(fi)
· fi −

lcm(LM<(fi),LM<(fj))

LT<(fj)
· fj . (18)

Equation (18) is called the S-polynomial associated to the S-pair (fi, fj). If you look back at examples 4 and 6, you
will see that these calculations were really computing S-pairs in disguise. A more systematic procedure generalizing
these examples can be found in Figure 2. This is called Buchberger’s algorithm.

Buchberger’s algorithm may be summarized as follows. For each of the possibile S-pairs, we apply a division
procedure analogous to that described in Proposition 3.10. If h is the polynomial obtained from Sfifj in step 2.ii.,
we say Sfifj reduces to h. In fact, many authors would define the normal form NFG,<(h) with respect to an ordered
set G as the ouput of this procedure. With that definition, we would then have NFI,< = NFG,< precisely when G
is a Gröbner basis (regardless of how we order the elements of G.) If some S-pair reduces to a nonzero polynomial
h, we add h to our partial Gröbner basis, and we now need to reduce further S-pairs involving h. Once all S-pairs
are processed, our partial Gröbner basis is, in fact, a Gröbner basis. The following theorem establishes this fact,
and much more.
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Theorem 4. Fix G = {g1, . . . , gs} ⊂ K[x] and < a monomial order. The following are equivalent:

1. G is a Gröbner basis with respect to <

2. Buchberger’s algorithm run on (<, ⟨G⟩) outputs G.

3. Every S-polynomial formed from G has a standard representation: that is, whenever 1 ≤ i < j ≤ s we can
write

Sgi,gj =

s∑
k=1

hkgk (19)

where LM<(hkgk) ≤ LM<(Sgigj ) for all k with hkgk ̸= 0.

4. Every S-polynomial formed from G has a lcm representation: that is, whenever 1 ≤ i < j ≤ s we can write

Sgi,gj =

s∑
k=1

hkgk (20)

where LM<(hkgk) < lcm(LM<(gi),LM<(gj)) for all k with hkgk ̸= 0.

Here is a (unrealistically simple) example of Buchberger’s algorithm in action:

Example 11. Let f1 = x2, f2 = xy + y2. We use the Lex order with x > y. We compute

Sf1f2 = yf1 − xf2

= −xy2 (divisible by LM<(f2))

= −f2 + y3.

Since y2 is not divisible by LM<(f1) or LM<(f2), we set f3 = y2, and set G = {f1, f2, f3}. Now we have two more
S-polynomials to check:

Sf1f3 = y3x2 − x2y3 = 0,

and

Sf2f3 = y2f2 − xf3

= y4 (divisible by LM<(f3))

= yf2 + 0.

Theorem 4 implies G is a Gröbner basis, and in<(I) = ⟨x2, xy, y3⟩. The standard monomials 1, x, y, y2 can be
visualized as the lattice points in Z2

≥0 below a “staircase” formed by the generators of the initial ideal.

Proposition 4.1 establishes that Buchberger’s algorithm terminates in finite time. Combined with Theorem 4,
it’s straightforward to see that the output G forms a Gröbner basis, since the S-pairs formed from G are among
the (potentially very large) set of S-pairs that are processed.

Proposition 4.1. For any input (I,<), Buchberger’s algorithm (Figure 2) terminates after finitely-many steps.

Proof. To see that Buchberger’s algorithm terminates, let

I1 = ⟨LM<(f1), . . . ,LM<(fs)⟩.
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Note that I1 ⊂ in<(I), and that the inclusion is strict iff {f1, . . . , fs} is not a Gröbner basis with respect to < . If h
is the result of reducing some S-pair when running the algorithm, set I2 = I1 + ⟨LM<(h)⟩. Constructing I3, I4, . . .
in a similar way, we obtain an ascending chain of monomial ideals which must stabilize by Exercise 7. Suppose the
chain stabilizes after processing n S-pairs, and consider the reduction of any subsequent S-pair. This will be some
polynomial h with LM<(h) ∈ In+1. We claim h = 0; if not, then we would have LM<(h) /∈ In, however In = In+1.
Thus, after n steps, all remaining S-polynomials reduce to zero.

Proof of Theorem 4. (1) ⇒ (2): If h is the result of reducing any S-pair formed from G, we must show that h is
zero. If that were not the case, then we would have, just as in the proof of termination, that LM<(h) was not
divisible by any LM<(gi), contradicting the fact that G is a Gröbner basis.

(2) ⇒ (3): Suppose we were to trace the “quotients” produced in each reduction step (step 2.ii) of Buchberger’s
algorithm. Since we assume each S-pair reduces to zero, this would give us a representation

Sgi,gj =

s∑
k=1

hkgk.

If hk ̸= 0, then hk is a sum of polynomials whose leading terms have the form ti,j/LM<(gk) for some term
tij < LM<(Sgigj ), thus showing that this representation is standard.

(3) ⇒ (4): Every standard representation is also an lcm representation.

(4) ⇒ (1): Proof by contradiction. Let f ∈ ⟨G⟩, and suppose that LM<(f) is not divisible by LM<(g) for
any g ∈ G. Consider the following representation of f as an element of ⟨G⟩:

f =

s∑
j=1

hsgs. (21)

Without loss of generality, we may assume the hsgs are sorted by leading monomial2,

LM<(hsgs) ≤ LM<(hs−1gs−1) ≤ · · · ≤ LM<(hµ+1gµ+1) < LM<(hµgµ) = LM<(hµ−1gµ−1) = · · · = LM<(h1g1).

We choose a representation 21 such that LM<(h1g1) is minimal, and further such that the number µ of leading
monomials is also minimal.

If µ = 1, then LM<(h1g1) occurs as a monomial of some hsgs iff s = 1. Thus LM<(f) = LM<(h1g1), which
implies LM<(g1) divides LM<(f), a contradiction.

Since µ > 1, we may consider the monomial

m =
LM<(h1g1)

lcm(LM<(g1),LM<(g2))
=

LM<(h2g2)

lcm(LM<(g1),LM<(g2))
. (22)

In particular, for some c ∈ K we may write

LT<(h1) LT<(g1) = cm lcm(LM<(g1),LM<(gs)). (23)

Now consider an lcm representation of Sg1g2 ,

Sg1g2 =

s∑
k=1

ĥkgk, where ĥkgk ̸= 0 ⇒ LM<(ĥkgk) < lcm(LM<(g1),LM<(g2)). (24)

Multiplying this equation by cm and then subtracting cmSg1g2 from both sides, we obtain (using 22) a represen-
tation of 0 as an element of ⟨G⟩,

0 =
(
cmĥ1 − LT<(h1)

)
g1 +

(
cmĥ2 + c′ LT<(h2)

)
g2 +

s∑
k=3

(cmĥs) gs, (25)

2In this case, if higs = 0, we should take LM<(higi) = 1.
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where c′ ∈ K may depend on c and LC<(g2). Adding 25 to 21, we obtain a new representation of f as an element
of ⟨G⟩. For this representation, observe that

LM<

((
h1 − LT<(h1) + cmĥ1

)
g1

)
≤ max

(
(h1 − LT<(h1)) LM<(g1), mLM<(ĥ1g1)

)
< max (LM<(h1g1), m lcm(LM<(g1),LM<(g2))) (using 24)

= LM<(h1g1) (using 23.)

Similarly, one may show

LM<

((
h2 − c′ LT<(h2) + cmĥ2

)
g2

)
≤ LM<(g2h2), strict iff c = c′,

LM<

((
hs + cmĥs

)
gs

)
≤ LM<(hsgs) ∀s ≥ 3.

Thus, for this new representation, we have either fewer leading monomials, or if µ = 2 and c′ = c, a smaller leading
monomial. In either case, this contradicts the minimality of 21.

A weakness of Buchberger’s algorithm is that it spends a huge amount of time reducing superfluous S-pairs
which can ultimately be reduced to 0. Thus, it is a huge advantage to be able to predict in advance when this will
occur. This leads naturally to Buchberger’s criteria. The first of these criteria is the simplest to use, and its proof
follows easily from the lcm representation appearing in Theorem 4.

Proposition 4.2. [Buchberger’s first criterion] Suppose f, g ∈ G are such that LM<(f) and LM<(g) are relatively
prime. Then Sfg has a lcm representation with respect to G and < .

Proof. We define the “tails” of f and g wrt < to be

tail<(f) = f − LT<(f), tail<(g) = g − LT<(g).

WLOG assume LC<(f) = LC<(g) = 1. We then calculate

Sfg = LM<(g)f − LM<(f)g

= (g − tail<(g))f − (f − tail<(f))g

= tail<(f)g − tail<(g)f.

The last of these formulae is a lcm representation, since

LM< (tail<(f)g) < LM<(fg) = lcm(LM<(f),LM<(g)),

LM< (tail<(g)f) < LM<(fg) = lcm(LM<(f),LM<(g)).

There are many examples which show that Gröbner bases are not preserved under specialization of variables.
For instance, if we take G = {ax+ y + b, by + z}, then Proposition 4.2 implies this is a Gröbner basis for the Lex

order with a > y > b > z > x. However, if we set a = 1, and work with the induced Lex order on the remaining
variables, our polynomials become G = {x+ y + b, by + z}, and we get the S-polynomial

b(x+ y + b)− (by + z) = b2 + bx− z w/ b2 /∈ ⟨y, by⟩.

Nevertheless, we can prove a specialization property for elimination orders with x > y, provided that we specialize
the cheap variables y to sufficiently generic values.

Proposition 4.3. Let G = {g1, . . . , gs} ⊂ K[x,y] = K[x1, . . . , xn, y1, . . . , ym] be a Gröbner basis with respect to
an elimination order with x > y. Let us partition the set G as

G = {g1, . . . , gs′} ∪ {gs′+1, . . . , gs}

where g1, . . . , ss′ ∈ K[y] and gs′+1, . . . , gs /∈ K[y]. We may write for i = s′ + 1, . . . , s,

gi(x,y) = ci(y)x
αi + l.o.t.,

where LT<(gi) = LT<(ci) ·xαi where xαi > 1. Then, if ȳ ∈ Km is a point such that ci(ȳ) ̸= 0 for all s′+1 ≤ i ≤ s′,
and gi(ȳ) = 0 for 1 ≤ i ≤ s′, the set of specialized polynomials {g1(x, ȳ), . . . , gs(x, ȳ)} is a Gröbner basis.
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To prove Proposition 4.3, we develop further the notion of a standard representation appearing in Theorem 4.

Proposition 4.4. Let G = {g1, . . . , gs} ⊂ K[x] and fix a monomial order < .

1. If we have
LM<(g1 + g2 + · · · gs) < LM<(g1) = LM<(g2) = · · · = LM<(gs), (26)

then g1 + · · ·+ gs is a K-linear combination of S-polynomials formed from G.

2. If G is a Gröbner basis, then every f ∈ ⟨G⟩ has a standard representation,

f =

s∑
i=1

higi w/ higi ̸= 0 ⇒ LM<(higi) ≤ LM<(f).

Proof. For part 1, our assumption 26 implies that

LC<(g1) + LC<(g2) + · · ·+ LC<(gs) = 0. (27)

It follows that a suitable K-linear combination is given by

s−1∑
i=1

LC<(gi)Sgigs =

s−1∑
i=1

LC<(gi)

(
gi

LC<(gi)
− gs

LC<(gs)

)

=

s−1∑
i=1

gi −

(
s−1∑
i=1

LC<(gi)

LC<(gs)

)
gs

=

s∑
i=1

gi (by 27.)

For part 2, take any f =

s∑
i=1

higi ∈ I. Let xα be the maximum element of {LM<(higi) | 1 ≤ i ≤ s}, and write

f =
∑
i w/

LM<(higi)=xα

LT<(hi)gi +
∑
i w/

LM<(higi)=xα

tail<(hi)gi + l.o.t.

By Part 1, the first summand as a linear combination of S-polynomials formed from G, and thus Theorem 4 implies
it has a standard representation. Since the second and third summands contribute smaller leading terms than the
first, we conclude that f has a standard representation.

Proof of Proposition 4.3. Consider the “partial S-polynomials” defined by

Sij(x,y) =
lcm(xα

i ,x
α
j )

ci(ȳ)xα
i

gi(x,y)−
lcm(xα

i ,x
α
j )

cj(ȳ)xα
j

gj(x,y).

If we specialize, we get an honest S-polynomial with respect to the induced order on K[x],

Sij(x, ȳ) = Sgi(x,ȳ)gj(x,ȳ).

By Proposition 4.4, Sij(x,y) has a standard representation in K[x,y],

Sij(x,y) =

s∑
i=1

hi(x,y)gi(x,y). (28)

For each summand whose specialization doesn’t vanish, hi(xȳ)gi(x, ȳ) ̸= 0, we have

LM< (hi(x, ȳ)gi(x, ȳ)) ≤ LM< (hi(x,y)gi(x,y))

≤ LM<(Sij)

< lcm(xαi ,xαj )

where the first and third inequalities use the fact that < is an elimination order. Thus, specializing the standard
representation 28 in K[x,y], we obtain a lcm representation for the corresponding S-polynomial in K[x],

Sgi(x,ȳ)gj(x,ȳ) =

s∑
i=1

hi(x, ȳ)gi(x, ȳ).

Thus, Theorem 4 implies that {g1(x, ȳ), . . . , gs(x, ȳ)} forms a Gröbner basis.
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5 Algebra/geometry dictionary

5.1 Nullstellensaätz

For any field K, the n-dimensional affine space An
K is defined to be the set Kn consisting of all ordered n-tuples

of elements of K. The most basic objects studied in algebraic geometry are the Zariski-closed subsets of An
K, also

known as affine algebraic varieties.

Definition 5.1. For any set of polynomials S ⊂ K[x1, . . . , xn], the vanishing locus V(S) is defined to be the set
of all points in affine n-space over K where every polynomial in S vanishes:

VK(S) = {a ∈ An
K | f(a) = 0 ∀f ∈ S}.

When the field is clear we write V(S). A set of the form VK(S) is called a Zariski-closed subset of An
K.

It would not be much of a restriction to assume the set S appearing in Definition 5.1 is an ideal.

Exercise 9. Show that V(S) = V (⟨S⟩).

As long as it’s clear that we are talking about a subset of An
K, it will be ok to simply call V(S) a Zariski-

closed set. However, after we develop parallel notions for projective algebraic varieties, this shorthand will become
ambiguous. When in doubt, say where things live!

Exercise 10. (For readers familiar with topology) Show that the Zariski-closed sets are the closed sets with respect
to a topology on An

K. This is called the Zariski topology.

Definition 5.2. If X ⊂ An
K is any set, we define its Zariski closure in An

K to be the smallest (inclusion-wise)
Zariski-closed set containing X. We denote the Zariski closure of X in An

K by X.

A basic result in algebraic geometry is Hilbert’s Nullstellensatz, which establishes a 1-1 correspondence between
Zariski-closed and radical ideals. We recall the definition of a radical ideal.

Definition 5.3. An ideal I ⊂ K[x] is said to be radical if whenever fm ∈ I for some f ∈ K[x], m ∈ Z≥0, we have
f ∈ I.

The operation of taking the vanishing locus of an ideal has a “sort of” inverse operation.

Definition 5.4. For any subset X ⊂ An
K, we define the vanishing ideal I(X) to be the set of all polynomials that

vanish on all points of X:
I(X) = {f ∈ K[x] | f(a) = 0 ∀a ∈ X}.

One can easily check the following properties of the operations V and I:

1. I(X) = I(X)

2. V(I(V(X))) = V(X)

3. I(V(I(X))) = I(X)

4. For Zariski-closed X,Y ⊂ An
K, if I(X) = I(Y ), then X = Y.

The natural analogue of property 4 for ideals does not hold: for example, the ideals ⟨x⟩, ⟨x2⟩ ⊂ K[x] have the same
vanishing locus, but they are not equal.

Another obstruction to getting a bijection between ideals and varieties occurs when the fieldK is not algebraically
closed. Indeed, we have two distinct ideals ⟨1⟩, ⟨x2 +1⟩ ⊂ R[x], whose vanishing loci in A1

R are both the empty set.
Fortunately, as long as we assume K is algebraically closed, we can establish a bijection between Zariski-closed

sets and radical ideals.

Theorem 5. [Hilbert’s Nullstellensatz] If K is algebraically closed and I ⊂ K[x] is a radical ideal, then I(V(I)) = I.

Thus, if I, J ⊂ K[x] are two radical ideals with V(I) = V(J), for K algebraically closed it follows that

I = I(V(I)) = I(V(J)) = J.

Remarkably, Theorem 5 can be reduced to the following “weak” form.
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Theorem 6. [Weak Nullstellensatz] Let I ⊂ K[x] be an ideal, K algebraically closed. Then 1 ∈ I iff V(I) = ∅.

Notice that the weak Nullstellensatz reduces to Theorem 1 when K = C and n = 1. Also, the “only if” direction
of Theorem 6 still holds when the field K is not algebraically closed. Since Buchberger’s algorithm uses the same
operations whether we work over the field K or any of its extensions, Gröbner bases can provide a simple infeasibility
certificate that VK(I) is empty.

Corollary 5.5. Let I ⊂ K[x] be an ideal, K be an algebraically closed field containing K. Then VK(I) = ∅ iff the
reduced Gröbner basis of I is the set {1}.

Example 12. Let G = ([n], E) be a simple, undirected graph on n vertices. Recall that a proper k-coloring of G
is a function χ : [n]→ [k] such that χ(i) ̸= χ(j) whenever there is an edge (i, j) ∈ E. If we replace [k] with the set
of k-th roots of unity, it is easy to write down a system of polynomials whose set of solutions in C are precisely the
k-colorings of G. Indeed, we may define the k-th coloring ideal of G to be

Icol(k,G) = ⟨xk
i − 1 | i ∈ [n]⟩+ ⟨xk−1

i + xk−2
i xj + · · ·+ xix

k−2
j + xk−1

j | (i, j) ∈ E⟩.

By Corollary 5.5, if we take K = Q to be our field of definition, then it follows that I has a proper k-coloring if
and only if the reduced Gröbner basis of Icol(k,G) equals {1}. The following code shows that the Petersen graph
(an example of a Kneser graph) is 3-colorable, but not 2-colorable.

needsPackage "Graphs"

coloringIdeal = (k, KK, G) -> (

(V, E) := (vertices G, toList \ edges G);

n := length V;

R := KK[(symbol x)_0..(symbol x)_(n-1)];

eq1 := apply(n, i -> x_i^k - 1);

eq2 := apply(E, e -> sum(0..k-1, i -> x_(first e)^i * x_(last e)^(k-1-i)));

ideal(eq1 | eq2)

)

G = kneserGraph(5,2)

gens gb coloringIdeal(2, QQ, G) -- no 2-colorings by NSZ

gens gb coloringIdeal(3, QQ, G) -- chromatic number is 3

Let’s now prove both Nullstellensätze.

Proof of Weak Nullstellensatz. Clearly V(I) ̸= ∅ implies 1 /∈ I. We prove the converse by induction on n. When
n = 1, the ideal I is generated by a single polynomial p which has a root r ∈ V(I). For n > 1, we write
x = {x1, . . . , xn−1}. Let I ⊂ K[x, xn] with 1 /∈ I. For any a ∈ K we consider the ideal I|xn=a ⊂ K[x] obtained by
specializing every element of I to xn = a. If we can show 1 /∈ I|xn=an

for some an ∈ K, then by induction we would
get a point (a1, . . . , an−1) ∈ V(I|xn=a), which would then imply (a1, . . . , an) ∈ V(I).

Consider the elimination ideal J = I∩K[xn].We treat separately the cases when J contains a nonzero polynomial
and when it does not.

In the first case, we have J = ⟨
d∏

j=1

(xn − bj)⟩ for some b1, . . . , bd ∈ K. We claim that 1 /∈ I|xn=bi for some bi.

If this were not the case, then by induction we would have for each i a polynomial Bi ∈ K[x] with Bi(x, bi) = 1.
Note, however, that there exist polynomials Ai ∈ K[x, xn] such that

Bi(x, xn) = Bi(x, bi + (xn − bi)) = Bi(x, bi) + (xn − bi)A(x, xn) = 1 + (xn − bi)A(x, xn).

Re-arranging these identities and taking their product, we obtain

1 =

d∏
i=1

(
Bi(x, xn) + (bi − xn)A(x, xn)

)
,

and hence, for some A ∈ K[x, xn], we have

1 =

d∏
j=1

Bi(x, xn) +A(x, xn)

d∏
j=1

(xn − bj) ∈ I
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a contradiction.
In the second case, we apply Proposition 4.3 for the Lex order with cheap variables y = {xn} and expensive

variables x = {x1, . . . , xn−1}. If G is a Gröbner basis for I with respect to this order, choosing a such that all
leading coefficients in xn do not vanish implies that G|xn=a is a Gröbner basis for Ixn=a. Moreover, none of the
leading monomials of G|xn=a is 1, as this would imply G ∩K[xn] ̸= ∅. Thus 1 /∈ I|xn=a, as desired.

Proof of Hilbert’s Nullstellensatz. The inclusion I ⊂ I(V(I)) is trivial. For the reverse inclusion, suppose I =
⟨f1, . . . , fr⟩, and suppose f ∈ I(V(I)). Let y be a new variable and consider the ideal

J = ⟨f1, . . . , fs, yf − 1⟩ ⊂ K[x, y].

Then we have VK(J) = ∅, so Theorem 6 implies that 1 ∈ J. More explicitly, we can write

1 = h1(x, y)f1(x) + · · ·+ hs(x, y)fs(x) + hs+1(x, y)(yf(x)− 1).

If we set y = 1/f(x) and clear denominators, we obtain

f(x)m = H1(x)f1(x) + · · ·+Hs(x)fs(x)

for some H1, . . . ,Hs ∈ K[x]. Since I is radical, we conclude that f ∈ I.

The last proof illustrates a general trick for turning a polynomial inequation f(x) ̸= 0 into a polynomial equation
with one new variable, f(x)y = 1. This is sometimes called the Rabinowitsch trick.

5.2 Irreducibility and decomposition

Next, we discuss the decomposition of varieties into simpler building blocks, the irreducible varieties.

Definition 5.6. Let X ⊂ An
C be an affine variety. We say that X is irreducible if we cannot write X is the union

of two affine varieties properly contained in X. Otherwise we say X is reducible.

In the next proposition, we collect some useful facts about irreducible varieties and their vanishing ideals.

Proposition 5.7. 1. Every affine variety X can be written as uniquely as the union of irreducible subvarieties,

X = X1 ∪X2 ∪ · · · ∪Xk, (29)

with Xi ⊂ X irreducible such that Xi ̸⊂ Xj whenever 1 ≤ i < j ≤ k.

2. The variety X is irreducible iff its vanishing ideal IX is prime.

3. The vanishing ideal of any variety can be written uniquely as the intersection of prime polynomial ideals.
This is the prime decomposition of a radical ideal in K[x].

The X1, . . . , Xk appearing in are called the irreducible components of X, and 29 is called the (irredundant or
minimal) irreducible decomposition of X.

Proof. 1. To see that a decomposition of the form 29 exists, let X be any variety. If X is irreducible, we are
done. Otherwise, we can write X = X1 ∪X ′

1 for proper subvarieties X1, X
′
1 ⊊ X. We are again done if both

subvarieties are irreducible, so suppose X1 is not. We can continue to play this game, but not forever: for
otherwise, we would generate a strictly descending chain of subvarieties

X1 ⊋ X2 ⊋ · · ·

and a corresponding strictly ascending chain of vanishing ideals

IX1
⊊ IX2

⊊ · · · ,

which would contradict Hilbert’s Basis Theorem 2. Thus we obtain a decomposition of X as the union of
a finite number of irreducible subvarieties. After deleting some of these subvarieties, we may also assume
the irredundancy condition Xi ̸⊂ Xj . To see uniqueness, suppose we have another irredundant irreducible
decomposition X = X ′

1 ∪ · · ·X ′
j . Then, for each X ′

j , we have that

X ′
j = X ′

j ∩X =
(
X ′

j ∩X1

)
∪ · · · ∪

(
X ′

j ∩Xk

)
,

and since X ′
j is irreducible we must have X ′

j ⊂ Xij for some ij between 1 and k. Applying this argument in
reverse, we may deduce that X ′

j = Xij .
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2. Suppose X is irreducible and let f1, f2 ∈ K[x] such that their product f1f2 vanishes on X. We may write

X = (X ∩V(f1)) ∪ (X ∩V(f2)) . (30)

If neither f1 nor f2 vanish on X, then we have written X in eq. (30) as the union of two proper subvarieties,
contradicting irreducibility. Thus either f1 or f2 is in the vanishing ideal IX , proving thus ideal is prime.
Conversely, if X is reducible, then we can write X = X1 ∪X2 with Xi ⊊ X . The strict inclusions reverse
for the vanishing ideals: IX ⊊ IXi

. So take fi ∈ IXi
\ IX for i = 1, 2. Then f1f2 ∈ IX shows that IX is not

prime.

3. Any variety X has a decomposition 29, and we may consider the prime ideals P1 = IX1
, . . . , Pk = IXk

.

Define I =

k⋂
j=1

Pj . It is easy to check that I is a radical ideal vanishing on X. So, when K is algebraically

closed, Hilbert’s Nullstellensatz (Theorem 5) implies I = IX . The general case follows by pulling back a
prime decomposition after extending scalars to an algebraic closure, φ : K[x] → K[x], and eliminating any
redundant primes that appear after pulling back.

When doing symbolic computation, we are a bit of a disadvantage, since a general element favorite algebraically
closed field C is not computable. So we instead work over Q, or even a finite field, and hope for the best. Sometimes
this causes no issues.

Example 13. In the example below, we work with an ideal I ⊂ Q[x, y, z]. We verify that the ideal I, although not
prime, is radical. The command decompose writes I as the intersection of two prime ideals,

I = ⟨x2 − y⟩ ∩ ⟨z + 1, y − 2, x− 1⟩.

This corresponds to the fact that VQ(I) defines the union of a quadric surface and the point in (−1, 2, 1) ∈ Q3. In
this case, the same is true if we work over the complex numbers.

R = QQ[x,y,z]

I = ideal(x^2*z+x^2-y*z-y, x^2*y-2*x^2-y^2+2*y, x^3-x^2-x*y+y)

isPrime I, I == radical I -- false, true

decompose I

The next two example illustrates that we should be somewhat cautious when decomposing ideals.

Example 14. Consider I = ⟨x2 + xy + y2⟩ ⊂ Q[x, y]. You can check that this is a prime ideal. Unfortunately,
this does not remain true when we extend scalars to C. What this means is that for the ring homomorphism
φ : Q[x, y]→ C[x, y], the complex polynomial ideal generated by φ(f) for all f ∈ I is not prime. Ineeded, we have

x2 + xy + y2 = (x+ ωy)(x+ ω2y)

where ω ∈ C is a primitive cube root of unity. Thus, the vanishing locus of this polynomial in A2
C is the union of

two lines.

There is a generalization of the prime decomposition in Proposition 5.7 for ideals that are not radical, called
primary decomposition. We say an ideal I is primary if its radical is prime, and that I is irreducible if whenever
I = I1 ∩ I2 then either I = I1 or I = I2.

Theorem 7 (Lasker-Noether Theorem). Any ideal I ⊂ K[x] can be written an irredundant intersection of primary
ideals,

I = Q1 ∩ · · · ∩Qs,

such that P1 =
√
Q1, . . . , Ps =

√
Qs are distinct prime ideals, and ∩j ̸=iPj ̸⊂ Pi for all i. Moreover, the set of

associated primes
Ass(I) = {P1, . . . , Ps}

appearing in such a decomposition is unique.
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Example 15. Consider the ideal I = ⟨x2y, x3⟩ ⊂ C[x, y]. The vanishing locus VC(I) is the line x = 0 in C2. This is
an irreducible variety, whose prime vanishing ideal is

√
I = ⟨x⟩ ⊋ I. Running decompose tells us about the prime

decomposition of
√
I. To get information about I instead, we use primaryDecomposition, whose output informs

us that
I = ⟨x2⟩ ∩ ⟨x3, y⟩.

For the first of these ideals, we have the associated prime
√
⟨x2⟩ =

√
I = ⟨x⟩. On the other hand, we have another

associated prime,
√
⟨x3, y⟩ = ⟨x, y⟩ ⊃ ⟨x⟩. The first prime is said to be minimal and the second is embedded. This

primary decomposition, despite being irredundant, is not unique: for instance

I = ⟨x2⟩ ∩ ⟨x3, x2y, xy2, y3⟩.

We have already seen through Gröbner bases how monomial ideals play a special role in understanding general
polynomial ideals. An extremely special class of monomial ideals of all are the ones that are also radical.

Exercise 11. Show that a monomial ideal is radical iff its minimal generators are all squarefree.

Squarefree monomial ideals are very combinatorial objects. This is because any subset S ⊂ [n] gives rise to the
squarefree monomial

xS =
∏
i∈S

xi ∈ K[x1, . . . , xn].

Given a squarefree monomial ideal I = ⟨xS1 , . . . ,xSk⟩, we may construct an associated simplicial complex called
the Stanley-Reisner complex:

∆I = {S ⊂ [n] | xS /∈ I}.

This description can be applied in reverse: the Stanley-Reisner ideal of an arbitrary simplicial complex is the
monomial ideal generated by its minimal non-faces. These ideals played a surprising role in Stanley’s proof of the
upper bound theorem.

Example 16. The following code shows an example of how to visualize a 2D simplicial complexes and play with
the associated Stanley-Reisner ideals. How do the associated primes of I relate to the faces of ∆I?

R = QQ[a..f]

help simplicialComplex

I = monomialIdeal(c*d,c*d,e*f,e*f,a*c,a*f,b*d,b*e)

netList decompose I

B2 = basis(2, R/I) -- contains minimal nonfaces on 2 vertices

needsPackage "SimplicialDecomposability"

S = simplicialComplex I

faces S

isShellable S -- false

netList primaryDecomposition I

needsPackage "Visualize";

openPort "222";

visualize S

5.3 Functions and mappings

A common philosophy in math is that the properties of a “space” should be reflected by the properties of the
functions one can define on it. On affine varieties, there are two important types of functions.

Definition 5.8. IfX ⊂ An
K is an affine variety, its coordinate ring is defined to be the quotient ringK[X] = K[x]/IX .

When X is irreducible, Proposition 5.7 implies that K[X] is an integral domain, in which case its field of fractions
is called the function field of X and denoted K(X).

To make sense of Definition 5.8, note that if we have, say, two polynomial functions (also called regular functions)
f, g : An

K → K, then their restrictions to X are equal iff f − g ∈ IX . Thus, the coordinate ring of X can be thought
of as the ring of all polynomial functions on X. Similarly, for irreducible X, the function field of X can be thought
of as the field of rational functions on X.
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Regular and rational functions can be throught of as mappings from the variety X to the variety A1
K. The

following definitions include these as special cases. For an affine variety X ⊂ An
K, we say that U ⊂ X is Zariski-

open in X if U = X ∩ (An
K \ Y ) for some other affine variety Y ⊂ An

K. This is precisely what it means for a set to
be open in the topology on X induced by the Zariski topology on An

K.

Definition 5.9. For affine varieties X ⊂ An
K, Y ⊂ Am

K , and polynomials f1, . . . , fm ∈ K[x] = K[x1, . . . , xn], the
map

X → Y

x 7→ (f1(x), . . . , fm(x))

is said to be regular. For X irreducible, suppose the f1, . . . , fm ∈ K(X) are such that fi(x) exists for all i and x
contained in some nonempty Zariski-open U ⊂ X. Then then the map

f : U → Y

x = (x1, . . . , xn) 7→ (f1(x), . . . , fm(x))

is said to be a rational map, also denoted
f : X 99K Y.

A rational map is really better thought of as an equivalence class of the pairs (f, U) appearing in Definition 5.9,
such that the functions f agree on the common overlap of any two open sets U. The union over all such open sets
is also open, and is the maximal domain of definition for f.

6 Dimension of an affine variety

Throughout this section, K denotes an algebraically closed field. The dimension of an affine variety X ⊂ An
K can

be thought of as the number of “free variables” in the vanishing ideal of X. To make this precise, it is technically
convenient, although not strictly necessary, to assume that X is irreducible, and then define the dimension of an
arbitrary variety to be the maximum dimension of its irreducible components.

For a general field extension F/K, we recall the notion of a set B ⊂ F that is algebraically independent over K.
For our purposes, B = {b1, . . . , bk} will always be finite, in which case this means that there exists no polynomial
p ∈ K[x1, . . . , xk] such that p(b1, . . . , bk) = 0. We say F/K is algebraic over F if there exists no subset of F that is
algebraically independent over K. A transcendence basis for F over K is a set B ⊂ F algebraically independent over
K such that F is algebraic over the subfield generated by B, denoted K(B). The cardinality of B in this case is
called the transcendence degree of K over F, which makes sense because of the following result.

Proposition 6.1. The transcendence degree of a field extension is well-defined.

To prove Proposition 6.1 , we make a detour into the realm of matroids.

Definition 6.2. A matroid is a pair (S,B), where S is a set and B is a collection of finite subsets of S called bases
that satisfy the following exchange property: for any B,B′ ∈ B and b ∈ B, there exists b′ ∈ B′ such that B′− b′ + b
(this is an abbreviation for (B′ \ {b′}) ∪ {b}) is also in B.

Exercise 12. Show that two bases of a matroid have the same cardinality.

Matroids appear everywhere. For one motivating example, we may take S to be a vector space, and B to be the
set of bases in the sense that is familiar from linear algebra. Similarly, we can show that the transcendence bases
of a field extension are also the bases of a matroid.

Proof of Proposition 6.1. Suppose B = {b1, . . . , bs}, B′ = {b′1, . . . , b′r} are two transcendence bases for F/K. If we
delete some element from B′, say b′1, then we need to find some bi ∈ B such that B− b′1+ bi is also a transcendence
basis. We know for all i = 1, . . . , s that there exists a univariate polynomial pi with coefficients in K(B′) such that
pi(bi) = 0. At least one pi must involve b′1 nontrivially; otherwise, all elements of B would be algebraic over of
K(b′2, . . . , b

′
r), and since b1 is algebraic over K(B) this would imply that B′ is not algebraically independent. Now,

for any pi involving b′i nontrivially, a similar argument shows that B′ − b′1 + bi is also a transcendence basis. This
proves that the transcendence bases of F/K give a matroid. Since any two bases in a matroid have the same size,
we are done.
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Definition 6.3. The dimension of an irreducible affine variety X ⊂ An
K is defined to be the transcendence degree

of K(X) over K. In general, dimX is defined to be the maximum dimension of an irreducible component of X.

It is worth observing that the coordinate functions of affine n-space restricted to an irreducible variety will
always contain a transcendence basis. If X ⊂ An

K is an affine variety (not necessarily irreducible), we say a subset
of variables {xi}i∈B for B ⊂ [n] is free on X if

IX ∩K[{xi}i∈B ] = ⟨0⟩.

Geometrically, this means the set-theoretic image of X under the projection onto the affine space with coordiantes
indexed by B is Zariski-dense: such a map is said to be dominant.

Proposition 6.4. The dimension of an affine variety X ⊂ An
K is the cardinality of a set of free variables on X.

Proof. Decompose X into irreducible components using Proposition 5.7, X = X1 ∪ · · · ∪Xk. Consider any {xi}i∈B

with B ⊂ [n]. Observe that this set is free on X if and only if it is free on some Xi. In particular, when
dim(Xi) = dim(X), we have |B| ≤ dim(X), with equality iff the set is a transcendence basis for K(Xi).

When X is irreducible, the transcendence bases formed by free sets of variables form a matroid on the ground
set [n], usually called the algebraic matroid of X.

Example 17. Suppose X = V(f) for some nonzero f ∈ K[x1, . . . , xn]. Such a variety is called a hypersurface
in An

K. If xi is any variable appearing in f, then Theorem 3 implies that B = {x1, . . . , xn} − xi is free on X. In
particular, when X is irreducible, this set is a transcendence basis for K(X). It follows that the dimension of any
(possibly reducible) hypersurface in An

K is n− 1.

Exercise 13. Use the primitive element theorem from field theory to show that any affine variety is birationally
equivalent to a hypersurface.

Let us revisit the problem of solving polynomial systems of equations from the geometric point of view. In order
for this task to be feasible, we need to assume that the set of solutions to these equations is finite. Thus, we would
like to characterize those ideals I ⊂ K[x] such that VK(I) is a finite set. Our assumption that K is algebraically
closed gives the following clean characterization.

Theorem 8. [Finiteness Theorem] Let I ⊂ K[x1, . . . , xn] be an ideal, < a monomial order. The following are
equivalent:

1. For each xi with 1 ≤ i ≤ n, we have xmi
i ∈ in<(I) for some mi ∈ Z>0.

2. The set of standard monomials with respect to < is finite.

3. The quotient ring K[x]/I is a finite-dimensional vector space over K.

4. The vanishing locus VK(I) is a finite set.

5. dim(VK(I)) = 0.

An ideal satisfying any one of the equivalent conditions of this theorem is said to be zero dimensional.

Remark The implications (1) ⇔ (2) ⇔ (3) ⇒ (4), (5) hold even when K is not algebraically closed.

Proof. (1) ⇒ (2): The hypothesis implies that all standard monomials have bounded degree in each variable, and
hence there are finitely-many.
(2) ⇒ (3) Using Proposition 3.10, this follows from the isomorphism of K[x]/I and NFI,<(K[x]) as vector spaces.
(3) ⇒ (4): For each xi, there is a nontrivial K-linear dependence on 1, xi, . . . , x

mi
i in K[x]/I, which encodes a

nonzero univariate polynomial pi(xi) ∈ I. Thus V(I) ⊂ V(p1, . . . , pn), a finite set.
(4) ⇒ (5): Suppose V(I) = {p1, . . . , pd}. Decomposing into irreducibles, it is enough to show that each component
{pi} has dimension 0, which follows since no set of variables is free on {pi}.
(5) ⇒ (1): Since {xi} is not free on V(I), we may take mi to be the degree of some nonzero pi(xi) ∈ I.

Proposition 6.5 (Shape Lemma). If I is a radical zero-dimensional ideal, then dimK(K[x]/I) (ie. the number of
standard monomials for any monomial order) is equal to cardinality of the set VK(I).
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Proof. Consider a change of coordinates y = Ax given by A ∈ GLn(K). Then dimK(K[x]/I) = dimK (K[y]/A∗(I)) ,
where

A∗(I) = ⟨f(A−1y) | f ∈ I⟩.

For a sufficiently generic coordinate change A, we may assume that

V (A∗(I)) = A ·V(I) = {p1, . . . , pd}

where the n-th coordinates of the points pi, which we denote by p
(n)
1 , . . . , p

(n)
d , are pairwise-distinct. Now, if < is a

Lex order with yn last, consider the polynomial p(yn) =

n∏
i=1

(
yn − p

(n)
i

)
. Using Theorem 3, we can see that

A∗(I) ∩K[yn] = ⟨p(yn)⟩.

The assumption that I is radical is needed so that p(yn) ∈ I. Thus the monomials 1, yn, . . . , y
d−1
n are standard.

It remains to show these are the only standard monomials. To see this, we construct for each i = 1, . . . , n − 1 a
univariate polynomial hi(yn) such that

yi − hi(yn) ∈ A∗(I),

thus proving yi ∈ in< (A∗(I)) . This can be achieved using Lagrange interpolation—set

hi(yn) =

d∑
j=1

p
(i)
j

∏
k ̸=j

yn − p
(n)
k

p
(n)
j − p

(n)
k

.

7 Four ways to solve

Consider the hypersurface V(f) ⊂ A2
C given by a bivariate polynomial of degree-4, f ∈ C[x, y]≤4. For concreteness,

we consider the Trott curve
f = 144(x4 + y4) + 350x2y2 − 225(x2 + y2) + 81.

From algebraic geometry, we know that f has 28 real bitangent lines. How can we find them?
The solution we gave in class (see lecture-2-15.m2) developed the notions of ideal quotients and saturations.

Let I, J ⊂ K[x] be ideals. Define the ideal quotient

I : J = {f ∈ K[x] | fJ ⊂ I}

and saturation

I : J∞ =

∞⋃
d=0

I : Jd.

An ascending chain argument shows that there exists an integer dI,J such that

I : J∞ = I : JdI,J . (31)

Proposition 7.1. The following relation holds

√
I : J =

√
I : J∞. (32)

Additionally, for K algebraically closed we have

1. V(I : J∞) = V(I) \V(J).

2. If I = I(X) is the vanishing ideal of a variety X, then I : J is the vanishing ideal of X \V(J).

Proof. First we prove 32. Suppose f ∈
√
I : J∞, so that fn ∈ I : J∞ for some n. Choosing dI,J as in 31, this

implies for any g ∈ J that (fg)max(n,dI,J ) ∈ I. Hence fg ∈
√
I. Since g ∈ J was arbitrary, we have f ∈

√
I : J

and conclude that
√
I : J∞ ⊂

√
I : J. For the reverse containment, write J = ⟨g1, . . . , gs⟩. If f ∈

√
I : J, then for

some M we have (fgi)
M ∈ I for all i = 1, . . . , s. Now, for any g ∈ J, it follows that fMgsM ∈ I, since expanding
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gsM in terms of g1, . . . , gs shows that g
sM ∈ ⟨gM1 , . . . , gMs ⟩. So fM ∈ I : JsM ⊂ I : J∞ gives f ∈

√
I : J∞, as needed.

Now, to prove 1, it suffices to show that V(
√
I : J) = V(I) \V(J). To see this, we show that

√
I : J is the

vanishing ideal of V(I) \V(J), which by the Nullstellensatz also implies the second part. Suppose f vanishes
on all points of V(I) \ V(J). Then for any g ∈ J we have that fg vanishes on all points of V(I), and hence
f ∈ I : J ⊂

√
I : J. Conversely, if f ∈

√
I : J, then fg vanishes on V(I) for all g ∈ J. In particular, this holds

whenever g does not vanish on some point of V(I) \V(J), implying f must vanish on all of these points.
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